{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T02:27:58Z","timestamp":1730255278710,"version":"3.28.0"},"reference-count":57,"publisher":"IEEE","license":[{"start":{"date-parts":[[2020,5,1]],"date-time":"2020-05-01T00:00:00Z","timestamp":1588291200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2020,5,1]],"date-time":"2020-05-01T00:00:00Z","timestamp":1588291200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2020,5,1]],"date-time":"2020-05-01T00:00:00Z","timestamp":1588291200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020,5]]},"DOI":"10.1109\/icra40945.2020.9197145","type":"proceedings-article","created":{"date-parts":[[2020,9,15]],"date-time":"2020-09-15T21:25:46Z","timestamp":1600205146000},"page":"4314-4321","source":"Crossref","is-referenced-by-count":27,"title":["CMTS: A Conditional Multiple Trajectory Synthesizer for Generating Safety-Critical Driving Scenarios"],"prefix":"10.1109","author":[{"given":"Wenhao","family":"Ding","sequence":"first","affiliation":[]},{"given":"Mengdi","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Ding","family":"Zhao","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"year":"2019","author":"beckham","article-title":"Adversarial mixup resynthesizers","key":"ref39"},{"doi-asserted-by":"publisher","key":"ref38","DOI":"10.24963\/ijcai.2019\/504"},{"doi-asserted-by":"publisher","key":"ref33","DOI":"10.1109\/CVPR.2018.00916"},{"doi-asserted-by":"publisher","key":"ref32","DOI":"10.1007\/978-3-030-01249-6_11"},{"doi-asserted-by":"publisher","key":"ref31","DOI":"10.1109\/TIP.2019.2916751"},{"year":"2019","author":"shen","article-title":"Interpreting the latent space of gans for semantic face editing","key":"ref30"},{"year":"2019","author":"struski","journal-title":"CoRR","article-title":"Interpolation in generative models","key":"ref37"},{"year":"2018","author":"sainburg","article-title":"Generative adversarial interpolative autoencoding: adversarial training on latent space interpolations encourage convex latent distributions","key":"ref36"},{"year":"2017","author":"arvanitidis","article-title":"Latent space oddity: on the curvature of deep generative models","key":"ref35"},{"year":"2019","author":"xie","journal-title":"CoRR","article-title":"Fully-featured attribute transfer","key":"ref34"},{"year":"2016","author":"suzuki","article-title":"Joint multimodal learning with deep generative models","key":"ref28"},{"year":"2018","author":"mariani","article-title":"Bagan: Data augmentation with balancing gan","key":"ref27"},{"doi-asserted-by":"publisher","key":"ref29","DOI":"10.1109\/CVPR.2017.645"},{"year":"2019","author":"caesar","article-title":"nuscenes: A multimodal dataset for autonomous driving","key":"ref2"},{"doi-asserted-by":"publisher","key":"ref1","DOI":"10.1109\/CVPR.2019.00895"},{"year":"2014","author":"dinh","article-title":"Nice: Non-linear independent components estimation","key":"ref20"},{"key":"ref22","first-page":"3483","article-title":"Learning structured output representation using deep conditional generative models","author":"sohn","year":"2015","journal-title":"Advances in neural information processing systems"},{"key":"ref21","first-page":"6","article-title":"beta-vae: Learning basic visual concepts with a constrained variational framework","volume":"2","author":"higgins","year":"2017","journal-title":"International Conference on Learning Representations (ICLR)"},{"year":"2017","author":"elgammal","article-title":"Can: Creative adversarial networks, generating” art” by learning about styles and deviating from style norms","key":"ref24"},{"key":"ref23","first-page":"2172","article-title":"Infogan: Interpretable representation learning by information maximizing generative adversarial nets","author":"chen","year":"2016","journal-title":"Advances in neural information processing systems"},{"doi-asserted-by":"publisher","key":"ref26","DOI":"10.21437\/Interspeech.2018-1023"},{"year":"2017","author":"yang","article-title":"Midinet: A convolutional generative adversarial network for symbolic-domain music generation","key":"ref25"},{"key":"ref50","first-page":"3581","article-title":"Semi-supervised learning with deep generative models","author":"kingma","year":"2014","journal-title":"Advances in neural information processing systems"},{"doi-asserted-by":"publisher","key":"ref51","DOI":"10.1109\/ICRA.2019.8793752"},{"key":"ref57","first-page":"2579","article-title":"Visualizing data using t-sne","volume":"9","author":"maaten","year":"2008","journal-title":"Journal of Machine Learning Research"},{"key":"ref56","first-page":"6306","article-title":"Neural discrete representation learning","author":"van den oord","year":"2017","journal-title":"Advances in neural information processing systems"},{"year":"2015","author":"makhzani","article-title":"Adversarial autoencoders","key":"ref55"},{"doi-asserted-by":"publisher","key":"ref54","DOI":"10.1007\/s11390-010-9355-8"},{"key":"ref53","first-page":"323","article-title":"Neural network recognizer for hand-written zip code digits","author":"denker","year":"1989","journal-title":"Advances in neural information processing systems"},{"year":"2018","author":"berthelot","article-title":"Understanding and improving interpolation in autoencoders via an adversarial regularizer","key":"ref52"},{"doi-asserted-by":"publisher","key":"ref10","DOI":"10.1109\/CVPRW.2018.00196"},{"doi-asserted-by":"publisher","key":"ref11","DOI":"10.1109\/ICRA.2019.8794392"},{"key":"ref40","first-page":"700","article-title":"Unsupervised image-to-image translation networks","author":"liu","year":"2017","journal-title":"Advances in neural information processing systems"},{"doi-asserted-by":"publisher","key":"ref12","DOI":"10.1109\/ICRA.2019.8793568"},{"doi-asserted-by":"publisher","key":"ref13","DOI":"10.1109\/ICRA.2019.8793868"},{"doi-asserted-by":"publisher","key":"ref14","DOI":"10.1109\/ICRA.2019.8794146"},{"doi-asserted-by":"publisher","key":"ref15","DOI":"10.1109\/ICRA.2019.8793868"},{"doi-asserted-by":"publisher","key":"ref16","DOI":"10.1109\/ICRA.2019.8793661"},{"year":"2018","author":"bansal","article-title":"Chauffeurnet: Learning to drive by imitating the best and synthesizing the worst","key":"ref17"},{"doi-asserted-by":"publisher","key":"ref18","DOI":"10.1109\/ICRA.2019.8793776"},{"year":"2016","author":"dinh","article-title":"Density estimation using real nvp","key":"ref19"},{"year":"2013","author":"kingma","article-title":"Auto-encoding variational bayes","key":"ref4"},{"key":"ref3","first-page":"2672","article-title":"Generative adversarial nets","author":"goodfellow","year":"2014","journal-title":"Advances in neural information processing systems"},{"doi-asserted-by":"publisher","key":"ref6","DOI":"10.1109\/CVPR.2016.110"},{"key":"ref5","first-page":"10 215","article-title":"Glow: Generative flow with invertible 1x1 convolutions","author":"kingma","year":"2018","journal-title":"Advances in neural information processing systems"},{"doi-asserted-by":"publisher","key":"ref8","DOI":"10.1109\/CVPR.2018.00240"},{"doi-asserted-by":"publisher","key":"ref7","DOI":"10.1109\/CVPR.2017.233"},{"key":"ref49","first-page":"3483","article-title":"Learning structured output representation using deep conditional generative models","author":"sohn","year":"2015","journal-title":"Advances in neural information processing systems"},{"doi-asserted-by":"publisher","key":"ref9","DOI":"10.1109\/CVPR.2019.00144"},{"doi-asserted-by":"publisher","key":"ref46","DOI":"10.1109\/ICCV.2017.167"},{"doi-asserted-by":"publisher","key":"ref45","DOI":"10.1109\/ICCV.2019.00605"},{"year":"2014","author":"rezende","article-title":"Stochastic backprop-agation and approximate inference in deep generative models","key":"ref48"},{"doi-asserted-by":"publisher","key":"ref47","DOI":"10.1109\/CVPR.2019.00453"},{"year":"2017","author":"hoffman","article-title":"Cycada: Cycle-consistent adversarial domain adaptation","key":"ref42"},{"key":"ref41","first-page":"172","article-title":"Multimodal unsupervised image-to-image translation","author":"huang","year":"2018","journal-title":"Proceedings of the European Conference on Computer Vision (ECCV)"},{"key":"ref44","first-page":"343","article-title":"Domain separation networks","author":"bousmalis","year":"2016","journal-title":"Advances in neural information processing systems"},{"key":"ref43","first-page":"469","article-title":"Coupled generative adversarial networks","author":"liu","year":"2016","journal-title":"Advances in neural information processing systems"}],"event":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","start":{"date-parts":[[2020,5,31]]},"location":"Paris, France","end":{"date-parts":[[2020,8,31]]}},"container-title":["2020 IEEE International Conference on Robotics and Automation (ICRA)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9187508\/9196508\/09197145.pdf?arnumber=9197145","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,6,28]],"date-time":"2022-06-28T00:09:44Z","timestamp":1656374984000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9197145\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,5]]},"references-count":57,"URL":"https:\/\/doi.org\/10.1109\/icra40945.2020.9197145","relation":{},"subject":[],"published":{"date-parts":[[2020,5]]}}}