{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,22]],"date-time":"2024-10-22T21:18:05Z","timestamp":1729631885354,"version":"3.28.0"},"reference-count":37,"publisher":"IEEE","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2014,5]]},"DOI":"10.1109\/icra.2014.6907443","type":"proceedings-article","created":{"date-parts":[[2014,9,30]],"date-time":"2014-09-30T20:32:36Z","timestamp":1412109156000},"page":"4021-4028","source":"Crossref","is-referenced-by-count":14,"title":["Learning predictive models of a depth camera & manipulator from raw execution traces"],"prefix":"10.1109","author":[{"given":"Byron","family":"Boots","sequence":"first","affiliation":[]},{"given":"Arunkumar","family":"Byravan","sequence":"additional","affiliation":[]},{"given":"Dieter","family":"Fox","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"article-title":"Injective Hilbert space embeddings of probability measures","year":"2008","author":"sriperumbudur","key":"ref33"},{"key":"ref32","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-540-75225-7_5","article-title":"A Hilbert space embedding for distributions","author":"smola","year":"2007","journal-title":"Algorithmic Learning Theory"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1145\/1143844.1143861"},{"journal-title":"Causality Models Reasoning and Inference","year":"2000","author":"pearl","key":"ref30"},{"key":"ref37","article-title":"Modelling transition dynamics in MDPs with RKHS embeddings","volume":"abs 1206 4655","author":"grunewalder","year":"2012","journal-title":"CoRR"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511809682"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1177\/0278364911403178"},{"key":"ref34","first-page":"1737","article-title":"Kernel bayes' rule","author":"fukumizu","year":"2011","journal-title":"Advances in Neural Information Processing Systems 24"},{"key":"ref10","doi-asserted-by":"crossref","DOI":"10.15607\/RSS.2010.VI.036","article-title":"Closing the learning-planning loop with predictive state representations","author":"boots","year":"2010","journal-title":"Proceedings of Robotics Science and Systems VI"},{"journal-title":"Proc UAI","article-title":"Hilbert Space Embeddings of Predictive State Representations","year":"2013","author":"boots","key":"ref11"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1145\/1329125.1329352"},{"article-title":"Mixed observability predictive state representations","year":"2013","author":"ong","key":"ref13","doi-asserted-by":"crossref","DOI":"10.1609\/aaai.v27i1.8680"},{"key":"ref14","first-page":"178","article-title":"Modelling sparse dynamical systems with compressed predictive state representations","volume":"28","author":"hamilton","year":"2013","journal-title":"Proceedings of the 30th International Conference on Machine Learning (ICML-13)"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2011.5979844"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/IROS.2011.6095151"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2012.6225318"},{"journal-title":"System Identification Theory for the User","year":"1999","author":"ljung","key":"ref18"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4613-0465-4"},{"journal-title":"Proc 27th Int Con Mach Learn (ICML)","article-title":"Hilbert space embeddings of hidden Markov models","year":"2010","author":"song","key":"ref28"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1016\/j.jphysparis.2009.08.005"},{"journal-title":"Proceedings of the 25th National Conference on Artificial Intelligence (AAAI) 2011","article-title":"An online spectral learning algorithm for partially observable nonlinear dynamical systems","year":"2011","author":"boots","key":"ref27"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/ROBOT.2008.4543718"},{"journal-title":"Advances in Neural Information Processing Systems (NIPS)","article-title":"Predictive representations of state","year":"2002","author":"littman","key":"ref6"},{"key":"ref29","article-title":"Tensor decompositions for learning latent variable models","volume":"abs 1210 7559","author":"anandkumar","year":"2012","journal-title":"CoRR"},{"journal-title":"Proc Robot Sci Syst (RSS)","article-title":"Learning to control a low-cost manipulator using data-efficient reinforcement learning","year":"0","author":"deisenroth","key":"ref5"},{"journal-title":"Proc UAI","article-title":"Predictive linear-Gaussian models of stochastic dynamical systems","year":"2005","author":"rudary","key":"ref8"},{"journal-title":"Proc UAI","article-title":"Predictive state representations: A new theory for modeling dynamical systems","year":"2004","author":"singh","key":"ref7"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1142\/S0219843608001376"},{"journal-title":"Advances in neural information processing systems","article-title":"An Input Output HMM Architecture","year":"1995","author":"bengio","key":"ref9"},{"journal-title":"Tech Rep","article-title":"The map-learning critter","year":"1985","author":"kuipers","key":"ref1"},{"journal-title":"Subspace Methods for System Identification A Realization Approach","year":"2005","author":"katayama","key":"ref20","doi-asserted-by":"crossref","DOI":"10.1007\/1-84628-158-X"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/DEVLRN.2010.5578854"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1016\/S0004-3702(00)00017-5"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/TSMCB.2012.2188507"},{"key":"ref23","first-page":"1440","article-title":"Learning forward models for robots","author":"dearden","year":"2005","journal-title":"IJCAI"},{"key":"ref26","first-page":"1441","article-title":"Gaussian process dynamical models","author":"wang","year":"2006","journal-title":"NIPS"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1162\/089976600300015411"}],"event":{"name":"2014 IEEE International Conference on Robotics and Automation (ICRA)","start":{"date-parts":[[2014,5,31]]},"location":"Hong Kong, China","end":{"date-parts":[[2014,6,7]]}},"container-title":["2014 IEEE International Conference on Robotics and Automation (ICRA)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6895053\/6906581\/06907443.pdf?arnumber=6907443","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,7,16]],"date-time":"2023-07-16T23:03:41Z","timestamp":1689548621000},"score":1,"resource":{"primary":{"URL":"http:\/\/ieeexplore.ieee.org\/document\/6907443\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,5]]},"references-count":37,"URL":"https:\/\/doi.org\/10.1109\/icra.2014.6907443","relation":{},"subject":[],"published":{"date-parts":[[2014,5]]}}}