{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T02:10:06Z","timestamp":1730254206104,"version":"3.28.0"},"reference-count":18,"publisher":"IEEE","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018,6]]},"DOI":"10.1109\/icphm.2018.8448870","type":"proceedings-article","created":{"date-parts":[[2018,8,30]],"date-time":"2018-08-30T22:02:05Z","timestamp":1535666525000},"page":"1-8","source":"Crossref","is-referenced-by-count":0,"title":["Unsupervised Feature Learning of Gearbox Fault Using Stacked Wavelet Auto-encoder"],"prefix":"10.1109","author":[{"given":"Haidong","family":"Shao","sequence":"first","affiliation":[]},{"given":"Hongkai","family":"Jiang","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2011.02.065"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2015.02.015"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymssp.2017.08.002"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymssp.2015.10.025"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2017.03.048"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1016\/j.renene.2010.05.012"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymssp.2011.02.006"},{"key":"ref17","doi-asserted-by":"crossref","first-page":"377","DOI":"10.1016\/j.sigpro.2016.07.028","article-title":"Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification","volume":"130","author":"chen","year":"2017","journal-title":"Signal Processing"},{"key":"ref18","first-page":"2391","volume":"66","author":"jiang","year":"2017","journal-title":"Stacked multilevel-denoising autoencoders A new representation learning approach for wind turbine gearbox fault diagnosis"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1016\/j.renene.2016.01.006"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymssp.2014.10.016"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.jsv.2016.09.005"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymssp.2017.03.034"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymssp.2016.12.040"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1016\/j.measurement.2012.06.009"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1016\/j.jsv.2016.12.041"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymssp.2015.08.023"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2013.12.018"}],"event":{"name":"2018 IEEE International Conference on Prognostics and Health Management (ICPHM)","start":{"date-parts":[[2018,6,11]]},"location":"Seattle, WA","end":{"date-parts":[[2018,6,13]]}},"container-title":["2018 IEEE International Conference on Prognostics and Health Management (ICPHM)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/8437943\/8448392\/08448870.pdf?arnumber=8448870","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,26]],"date-time":"2022-01-26T16:42:30Z","timestamp":1643215350000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8448870\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,6]]},"references-count":18,"URL":"https:\/\/doi.org\/10.1109\/icphm.2018.8448870","relation":{},"subject":[],"published":{"date-parts":[[2018,6]]}}}