{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T02:10:01Z","timestamp":1730254201428,"version":"3.28.0"},"reference-count":24,"publisher":"IEEE","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018,6]]},"DOI":"10.1109\/icphm.2018.8448857","type":"proceedings-article","created":{"date-parts":[[2018,8,30]],"date-time":"2018-08-30T22:02:05Z","timestamp":1535666525000},"page":"1-5","source":"Crossref","is-referenced-by-count":6,"title":["Aero-Engine Exhaust Gas Temperature Prognostic Model Based on Gated Recurrent Unit Network"],"prefix":"10.1109","author":[{"given":"Shisheng","family":"Zhong","sequence":"first","affiliation":[]},{"given":"Zhen","family":"Li","sequence":"additional","affiliation":[]},{"given":"Lin","family":"Lin","sequence":"additional","affiliation":[]},{"given":"Yongjian","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref10","first-page":"1","article-title":"Dynamic neural networks for gas turbine engine degradation prediction, health monitoring and prognosis","volume":"27","author":"kiakojoor","year":"2015","journal-title":"Neural Computing and Applications"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/ICPHM.2015.7245055"},{"key":"ref12","first-page":"15","article-title":"Aircraft engine lubricating oil monitoring by process neural network","volume":"16","author":"ding","year":"2006","journal-title":"Neural Network World"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2017.04.013"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2014.09.003"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1561\/2200000006"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2014.01.008"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1162\/neco.2006.18.7.1527"},{"key":"ref18","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"lecun","year":"2015","journal-title":"Nature"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymssp.2010.11.018"},{"key":"ref4","doi-asserted-by":"crossref","first-page":"214","DOI":"10.2514\/1.B35710","article-title":"Performance enhancement of global optimization-based gas turbine fault diagnosis systems","volume":"32","author":"ehsan","year":"2016","journal-title":"Journal of Propulsion and Power"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymssp.2005.09.012"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1115\/2000-GT-0627"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/1359-4311(95)00047-H"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/ICIT.2008.4608519"},{"key":"ref7","doi-asserted-by":"crossref","first-page":"433","DOI":"10.1243\/09544100JAERO474","article-title":"Evaluation of the relationship between exhaust gas temperature and operational parameters in cfm56-7b engines","volume":"223","author":"yimaz","year":"2009","journal-title":"Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.2514\/1.J052713"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ejor.2007.09.033"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/CCECE.2015.7129408"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/72.279181"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.3115\/v1\/D14-1179"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2017.09.048"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/3477.907576"},{"key":"ref23","article-title":"Adam: A method for stochastic optimization","author":"kingma","year":"2014","journal-title":"Proc of the Int Conf on Learning Representations (ICLR)"}],"event":{"name":"2018 IEEE International Conference on Prognostics and Health Management (ICPHM)","start":{"date-parts":[[2018,6,11]]},"location":"Seattle, WA","end":{"date-parts":[[2018,6,13]]}},"container-title":["2018 IEEE International Conference on Prognostics and Health Management (ICPHM)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/8437943\/8448392\/08448857.pdf?arnumber=8448857","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,26]],"date-time":"2022-01-26T13:54:21Z","timestamp":1643205261000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8448857\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,6]]},"references-count":24,"URL":"https:\/\/doi.org\/10.1109\/icphm.2018.8448857","relation":{},"subject":[],"published":{"date-parts":[[2018,6]]}}}