{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T02:13:45Z","timestamp":1725588825814},"reference-count":18,"publisher":"IEEE","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018,6]]},"DOI":"10.1109\/icphm.2018.8448734","type":"proceedings-article","created":{"date-parts":[[2018,8,30]],"date-time":"2018-08-30T22:02:05Z","timestamp":1535666525000},"page":"1-6","source":"Crossref","is-referenced-by-count":1,"title":["Lithium-ion battery state of charge estimation based on dynamic neural network and Kalman filter"],"prefix":"10.1109","author":[{"given":"Chen","family":"Kun","sequence":"first","affiliation":[]},{"given":"Mao","family":"Zhiwei","sequence":"additional","affiliation":[]},{"given":"Lai","family":"Yuehua","sequence":"additional","affiliation":[]},{"given":"Jiang","family":"Zhinong","sequence":"additional","affiliation":[]},{"given":"Zhang","family":"Jinjie","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/TIE.2017.2721880"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1049\/iet-pel.2014.0523"},{"key":"ref12","first-page":"2455","article-title":"State of charge estimation based on improved LiFeP04 battery model and Kalman filtering","author":"xu","year":"2016","journal-title":"2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia)"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1049\/el.2017.2677"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/TVT.2017.2715333"},{"key":"ref15","article-title":"Battery Data Set","author":"saha","year":"2007","journal-title":"NASA Ames Prognostics Data Repository"},{"key":"ref16","article-title":"Randomized Battery Usage Data Set","author":"bole","year":"0","journal-title":"NASA Ames Prognostics Data Repository"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/OPTIM.2017.7975036"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/IAS.2017.8101722"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/ICPHM.2015.7245023"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1016\/j.apenergy.2013.12.046"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/PHM.2012.6228867"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/MIM.2008.4579269"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/ECCE.2015.7310372"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/ICPHM.2015.7245037"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1016\/j.renene.2016.06.009"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1016\/j.rser.2017.05.001"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2018.2812421"}],"event":{"name":"2018 IEEE International Conference on Prognostics and Health Management (ICPHM)","start":{"date-parts":[[2018,6,11]]},"location":"Seattle, WA, USA","end":{"date-parts":[[2018,6,13]]}},"container-title":["2018 IEEE International Conference on Prognostics and Health Management (ICPHM)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/8437943\/8448392\/08448734.pdf?arnumber=8448734","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,26]],"date-time":"2022-01-26T16:51:12Z","timestamp":1643215872000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8448734\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,6]]},"references-count":18,"URL":"https:\/\/doi.org\/10.1109\/icphm.2018.8448734","relation":{},"subject":[],"published":{"date-parts":[[2018,6]]}}}