{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T02:09:50Z","timestamp":1730254190007,"version":"3.28.0"},"reference-count":18,"publisher":"IEEE","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018,6]]},"DOI":"10.1109\/icphm.2018.8448707","type":"proceedings-article","created":{"date-parts":[[2018,8,30]],"date-time":"2018-08-30T18:02:05Z","timestamp":1535652125000},"page":"1-7","source":"Crossref","is-referenced-by-count":4,"title":["Data-driven on-line health assessment for lithium-ion battery with uncertainty presentation"],"prefix":"10.1109","author":[{"given":"Yuchen","family":"Song","sequence":"first","affiliation":[]},{"given":"Datong","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Yu","family":"Peng","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1016\/j.energy.2013.11.061"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1016\/j.jpowsour.2014.06.133"},{"key":"ref12","first-page":"2645","article-title":"Battery health prognosis for electric vehicles using sample entropy and sparse bayesian predictive modeling","volume":"633","author":"hu","year":"2016","journal-title":"IEEE Transactions on Industrial Electronics"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.3390\/en6083654"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/TSMC.2015.2389757"},{"key":"ref15","first-page":"211","article-title":"Sparse bayesian learning and the relevance vector machine","volume":"1","author":"tipping","year":"2001","journal-title":"Journal of Machine Learning Research"},{"key":"ref16","article-title":"Fast marginal likelihood maximisation for snarse bavesian models.","author":"tipping","year":"2003","journal-title":"AISTATS"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1016\/j.microrel.2012.12.003"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1002\/0471667196.ess5050.pub2"},{"key":"ref4","article-title":"An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries","author":"liu","year":"2010","journal-title":"DTIC Document Tech Rep"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1016\/j.jpowsour.2011.03.101"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.jpowsour.2014.07.116"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.microrel.2013.03.010"},{"key":"ref8","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1016\/j.cja.2017.11.010","article-title":"Satellite lithium-ion battery remaining useful life estimation with an iterative updated rvm fused with the kf algorithm","volume":"31","author":"song","year":"2018","journal-title":"Chinese Journal of Aeronautics"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1016\/j.microrel.2017.06.045"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1016\/j.jpowsour.2012.10.060"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1007\/978-0-387-34445-4"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1016\/j.rser.2015.11.042"}],"event":{"name":"2018 IEEE International Conference on Prognostics and Health Management (ICPHM)","start":{"date-parts":[[2018,6,11]]},"location":"Seattle, WA, USA","end":{"date-parts":[[2018,6,13]]}},"container-title":["2018 IEEE International Conference on Prognostics and Health Management (ICPHM)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/8437943\/8448392\/08448707.pdf?arnumber=8448707","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,26]],"date-time":"2022-01-26T10:40:25Z","timestamp":1643193625000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8448707\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,6]]},"references-count":18,"URL":"https:\/\/doi.org\/10.1109\/icphm.2018.8448707","relation":{},"subject":[],"published":{"date-parts":[[2018,6]]}}}