{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T02:09:43Z","timestamp":1730254183279,"version":"3.28.0"},"reference-count":23,"publisher":"IEEE","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018,6]]},"DOI":"10.1109\/icphm.2018.8448617","type":"proceedings-article","created":{"date-parts":[[2018,8,30]],"date-time":"2018-08-30T22:02:05Z","timestamp":1535666525000},"page":"1-6","source":"Crossref","is-referenced-by-count":3,"title":["A gas path fault diagnostic model for gas turbine based on deep belief network with prior information"],"prefix":"10.1109","author":[{"given":"Dengji","family":"Zhou","sequence":"first","affiliation":[]},{"given":"Shixi","family":"Ma","sequence":"additional","affiliation":[]},{"given":"Yao","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Tingting","family":"Wei","sequence":"additional","affiliation":[]},{"given":"Huisheng","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Fang","family":"Wei","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref10","first-page":"738","article-title":"Gas turbine fault diagnosis based on ART2 Neural Network","author":"xu","year":"2008","journal-title":"IEEE Intelligent Control and Automation 2008 WCICA 2008 7th World Congress on"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1115\/1.4030277"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TIE.2016.2519325"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2013.50"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1016\/j.cja.2017.11.017"},{"key":"ref15","doi-asserted-by":"crossref","first-page":"572","DOI":"10.1016\/j.apenergy.2014.08.115","article-title":"A component map tuning method for performance prediction and diagnostics of gas turbine compressors","volume":"135","author":"tsoutsanis","year":"2014","journal-title":"Applied Energy"},{"key":"ref16","first-page":"1","article-title":"Exploring Strategies for Training Deep Neural Networks","volume":"1","author":"larochelle","year":"2009","journal-title":"Journal of Machine Learning Research"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.4249\/scholarpedia.5947"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1162\/089976602760128018"},{"key":"ref19","first-page":"25","author":"fischer","year":"2014","journal-title":"Training Restricted Boltzmann Machines An Introduction"},{"journal-title":"Gas Turbine Engine Parameter Interrelationships[M]","year":"1969","author":"urban","key":"ref4"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1016\/j.apenergy.2017.04.048"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.3390\/en6010492"},{"key":"ref5","first-page":"935","author":"simon","year":"2012","journal-title":"An Integrated Approach for Aircraft Engine Performance Estimation and Fault Diagnostics"},{"key":"ref8","doi-asserted-by":"crossref","first-page":"91603","DOI":"10.1115\/1.4027215","article-title":"Multiple-Model Sensor and Components Fault Diagnosis in Gas Turbine Engines Using AutoassociativeNeural Networks","volume":"136","author":"meskin","year":"2014","journal-title":"Journal of Engineering for Gas Turbines & Power"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1115\/GT2005-68027"},{"journal-title":"Gas turbine diagnostic theory and experiment research based on thermal parameters[D]","year":"2008","author":"xia","key":"ref2"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1115\/GT2002-30019"},{"key":"ref1","article-title":"Development and Electric Power Generation Technology of the Combustion Turbine","author":"liu","year":"2008","journal-title":"Applied Energy Technology"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1561\/2200000006"},{"key":"ref22","article-title":"SA-PSO algorithm for gas path diagnostics of gas turbine","author":"ma","year":"2016","journal-title":"Proc of the 16th Intern Symp on Transport Phenomena and Dynamics of Rotating Machinery"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1016\/j.energy.2016.05.008"},{"key":"ref23","first-page":"599","article-title":"A Practical Guide to Training Restricted Boltzmann Machines","volume":"9","author":"hinton","year":"2012","journal-title":"Momentum"}],"event":{"name":"2018 IEEE International Conference on Prognostics and Health Management (ICPHM)","start":{"date-parts":[[2018,6,11]]},"location":"Seattle, WA","end":{"date-parts":[[2018,6,13]]}},"container-title":["2018 IEEE International Conference on Prognostics and Health Management (ICPHM)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/8437943\/8448392\/08448617.pdf?arnumber=8448617","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,26]],"date-time":"2022-01-26T16:52:38Z","timestamp":1643215958000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8448617\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,6]]},"references-count":23,"URL":"https:\/\/doi.org\/10.1109\/icphm.2018.8448617","relation":{},"subject":[],"published":{"date-parts":[[2018,6]]}}}