{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T18:43:40Z","timestamp":1735584220678,"version":"3.28.0"},"reference-count":23,"publisher":"IEEE","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018,6]]},"DOI":"10.1109\/icphm.2018.8448394","type":"proceedings-article","created":{"date-parts":[[2018,8,30]],"date-time":"2018-08-30T22:02:05Z","timestamp":1535666525000},"page":"1-8","source":"Crossref","is-referenced-by-count":11,"title":["Learning Deep Representation for Blades Icing Fault Detection of Wind Turbines"],"prefix":"10.1109","author":[{"given":"Longting","family":"Chen","sequence":"first","affiliation":[]},{"given":"Guanghua","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Lin","family":"Liang","sequence":"additional","affiliation":[]},{"given":"Qing","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"SiCong","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1002\/we.1952"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2012.08.033"},{"key":"ref12","doi-asserted-by":"crossref","first-page":"276","DOI":"10.1109\/60.937208","article-title":"Using neural networks to estimate wind turbine power generation","volume":"16","author":"li","year":"2001","journal-title":"IEEE Trans Energy Convers"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/TSTE.2013.2241797"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref15","first-page":"1096","article-title":"Unsupervised feature learning for audio classification using convolutional deep belief networks","author":"lee","year":"2009","journal-title":"Proc Advances in Neural Information Processing Systems"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymssp.2017.06.022"},{"key":"ref17","first-page":"1929","article-title":"Dropout: A simple way to prevent neural networks from overfitting","volume":"15","author":"srivastava","year":"2014","journal-title":"J Mach Learn Res"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.580"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1016\/j.coldregions.2010.01.005"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1016\/j.coldregions.2006.06.005"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1016\/j.coldregions.2013.12.008"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.renene.2012.06.003"},{"key":"ref5","article-title":"Microprocessor-based liquid sensor and ice detector","author":"maatuk","year":"1999","journal-title":"Google Patents"},{"key":"ref8","first-page":"90630","article-title":"Towards early ice detection on wind turbine blades using acoustic waves","author":"berbyuk","year":"2014","journal-title":"Proc of SPIE Nondestructive Characterization for Composite Materials Aerospace Engineering Civil Infrastructure and Homeland Security 2014"},{"key":"ref7","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1016\/j.measurement.2016.06.064","article-title":"Ice detection using thermal infrared radiometry on wind turbine blades","volume":"93","author":"mu\u00f1oz","year":"2016","journal-title":"Measurement"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1175\/JAMC-D-13-09.1"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1016\/j.renene.2010.05.014"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TSTE.2012.2194725"},{"journal-title":"IEC-TC88 Maintenance Team MT12-1","article-title":"61400-12-1: Wind turbines-Part 12-1: Power performance measurements of electricity producing wind turbines","year":"2013","key":"ref20"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymssp.2015.10.025"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP.2013.6639346"},{"key":"ref23","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1038\/323533a0","article-title":"Learning representations by back-propagating errors","volume":"323","author":"rumelhart","year":"1986","journal-title":"Nature"}],"event":{"name":"2018 IEEE International Conference on Prognostics and Health Management (ICPHM)","start":{"date-parts":[[2018,6,11]]},"location":"Seattle, WA, USA","end":{"date-parts":[[2018,6,13]]}},"container-title":["2018 IEEE International Conference on Prognostics and Health Management (ICPHM)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/8437943\/8448392\/08448394.pdf?arnumber=8448394","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,26]],"date-time":"2022-01-26T16:39:30Z","timestamp":1643215170000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8448394\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,6]]},"references-count":23,"URL":"https:\/\/doi.org\/10.1109\/icphm.2018.8448394","relation":{},"subject":[],"published":{"date-parts":[[2018,6]]}}}