{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:20:49Z","timestamp":1732036849837,"version":"3.28.0"},"reference-count":26,"publisher":"IEEE","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2017,6]]},"DOI":"10.1109\/icphm.2017.7998298","type":"proceedings-article","created":{"date-parts":[[2017,8,3]],"date-time":"2017-08-03T20:24:14Z","timestamp":1501791854000},"page":"7-13","source":"Crossref","is-referenced-by-count":56,"title":["Lithium-ion battery remaining useful life prediction with Deep Belief Network and Relevance Vector Machine"],"prefix":"10.1109","author":[{"given":"Guangquan","family":"Zhao","sequence":"first","affiliation":[]},{"given":"Guohui","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Yuefeng","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Bin","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Cong","family":"Hu","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1016\/j.microrel.2013.03.010"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1016\/j.jpowsour.2014.07.176"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TIE.2015.2494529"},{"key":"ref13","article-title":"Parameters optimization of lebesgue sampling-based fault diagnosis and a a sis with application to Li-Ion batteries","author":"yan","year":"2016","journal-title":"Annual Conference on Prognostics & Health Management (PHM'16)"},{"key":"ref14","first-page":"1527","article-title":"3-D object recognition with deep belief nets","volume":"18","author":"nair","year":"2012","journal-title":"Advances in neural information processing systems"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2009.932166"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/PHM.2016.7819786"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1016\/j.ress.2013.02.022"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1088\/0957-0233\/26\/11\/115002"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2013.03.047"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1016\/j.jpowsour.2013.05.040"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1016\/j.microrel.2012.12.003"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.ress.2012.03.008"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/TIM.2008.2005965"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/TSMC.2013.2296276"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/PHM.2016.7819778"},{"key":"ref2","first-page":"1","article-title":"Survey on lithium-ion battery health assessment and cycle life estimation","volume":"36","author":"liu","year":"2015","journal-title":"Chinese Journal of Scientific Instrument"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1016\/j.apenergy.2014.03.086"},{"key":"ref1","first-page":"660","article-title":"Integratedprognostic framework with probability ensemble for lithium-ion battery","volume":"64","author":"liu","year":"2015","journal-title":"IEEE Transactions on Instrumentation and Measurement"},{"key":"ref20","first-page":"214","article-title":"Deep Convolutional Neural Network Based Regression Approach for Estimation of Remaining Useful Life","author":"babu","year":"2016","journal-title":"DASFAA 2016"},{"key":"ref22","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1126\/science.1127647","article-title":"Reducing the dimensionality of data with neural networks","volume":"313","author":"hinton","year":"2006","journal-title":"Science"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2014.09.003"},{"key":"ref24","first-page":"926","article-title":"A practical guide to training restricted boltzmann machines","volume":"9","author":"hinton","year":"2010","journal-title":"Momentum"},{"key":"ref23","first-page":"211","article-title":"Sparse Bayesian Learning and the Relevance Vector Machine","volume":"1","author":"tipping","year":"2001","journal-title":"J Mach Learn Res"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1016\/j.jpowsour.2011.08.040"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/RAMS.2015.7105073"}],"event":{"name":"2017 IEEE International Conference on Prognostics and Health Management (ICPHM)","start":{"date-parts":[[2017,6,19]]},"location":"Dallas, TX, USA","end":{"date-parts":[[2017,6,21]]}},"container-title":["2017 IEEE International Conference on Prognostics and Health Management (ICPHM)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/7990620\/7998291\/07998298.pdf?arnumber=7998298","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,10,2]],"date-time":"2019-10-02T00:45:47Z","timestamp":1569977147000},"score":1,"resource":{"primary":{"URL":"http:\/\/ieeexplore.ieee.org\/document\/7998298\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,6]]},"references-count":26,"URL":"https:\/\/doi.org\/10.1109\/icphm.2017.7998298","relation":{},"subject":[],"published":{"date-parts":[[2017,6]]}}}