{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:32:46Z","timestamp":1732041166816,"version":"3.28.0"},"reference-count":47,"publisher":"IEEE","license":[{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,12]]},"DOI":"10.1109\/icmla52953.2021.00050","type":"proceedings-article","created":{"date-parts":[[2022,1,25]],"date-time":"2022-01-25T20:40:12Z","timestamp":1643143212000},"page":"278-285","source":"Crossref","is-referenced-by-count":9,"title":["An Effective Baseline for Robustness to Distributional Shift"],"prefix":"10.1109","author":[{"given":"Sunil","family":"Thulasidasan","sequence":"first","affiliation":[]},{"given":"Sushil","family":"Thapa","sequence":"additional","affiliation":[]},{"given":"Sayera","family":"Dhaubhadel","sequence":"additional","affiliation":[]},{"given":"Gopinath","family":"Chennupati","sequence":"additional","affiliation":[]},{"given":"Tanmoy","family":"Bhattacharya","sequence":"additional","affiliation":[]},{"given":"Jeff","family":"Bilmes","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","first-page":"142","article-title":"Learning word vectors for sentiment analysis","author":"maas","year":"2011","journal-title":"Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics Human Language Technologies"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D15-1075"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2017.2723009"},{"key":"ref32","article-title":"Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop","author":"yu","year":"2015","journal-title":"arXiv preprint arXiv 1506 03857"},{"article-title":"Reading digits in natural images with unsupervised feature learning","year":"2011","author":"netzer","key":"ref31"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2008.128"},{"key":"ref37","first-page":"1631","article-title":"Recursive deep models for semantic compositionality over a sentiment treebank","volume":"1631","author":"socher","year":"2013","journal-title":"EMNLP"},{"article-title":"Trec document topic annotations","year":"0","author":"sherman","key":"ref36"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1016\/B978-1-55860-377-6.50048-7"},{"year":"2017","key":"ref34","article-title":"Tiny imagenet visual recognition challenge"},{"key":"ref10","first-page":"13 132","article-title":"A simple baseline for bayesian uncertainty in deep learning","author":"maddox","year":"2019","journal-title":"Advances in neural information processing systems"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/W18-6402"},{"key":"ref11","first-page":"4289","article-title":"Practical deep learning with bayesian principles","author":"osawa","year":"2019","journal-title":"Advances in neural information processing systems"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v33i01.33019801"},{"key":"ref13","first-page":"1050","article-title":"Dropout as a bayesian approximation: Representing model uncertainty in deep learning","author":"gal","year":"2016","journal-title":"International Conference on Machine Learning"},{"key":"ref14","article-title":"Learning confidence for out-of-distribution detection in neural networks","author":"devries","year":"2018","journal-title":"arXiv preprint arXiv 1802 04102"},{"key":"ref15","article-title":"Deep anomaly detection with outlier exposure","author":"hendrycks","year":"2018","journal-title":"arXiv preprint arXiv 1812 08942"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01231-1_38"},{"key":"ref17","article-title":"Auto-encoding variational bayes","author":"kingma","year":"2013","journal-title":"arXiv preprint arXiv 1312 6114"},{"key":"ref18","article-title":"Out-of-distribution detection in classifiers via generation","author":"vernekar","year":"2019","journal-title":"arXiv preprint arXiv 1910 01500"},{"key":"ref19","first-page":"9157","article-title":"Reducing network agnostophobia","author":"dhamija","year":"2018","journal-title":"Advances in neural information processing systems"},{"key":"ref4","first-page":"7167","article-title":"A simple unified framework for detecting out-of-distribution samples and adversarial attacks","author":"lee","year":"2018","journal-title":"Advances in neural information processing systems"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i04.5966"},{"article-title":"Enhancing the reliability of out-of-distribution image detection in neural networks","year":"2018","author":"liang","key":"ref3"},{"key":"ref27","article-title":"Training confidence-calibrated classifiers for detecting out-of-distribution samples","author":"lee","year":"2017","journal-title":"arXiv preprint arXiv 1711 09086"},{"key":"ref6","article-title":"On calibration of modern neural networks","author":"guo","year":"2017","journal-title":"arXiv preprint arXiv 1706 04599"},{"key":"ref29","article-title":"Learning multiple layers of features from tiny images","author":"krizhevsky","year":"2009","journal-title":"Citeseer Tech Rep"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01096"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.2172\/1525811"},{"key":"ref7","article-title":"mixup: Beyond empirical risk minimization","author":"zhang","year":"2017","journal-title":"arXiv preprint arXiv 1710 09412"},{"key":"ref2","article-title":"A baseline for detecting misclassified and out-of-distribution examples in neural networks","author":"hendrycks","year":"2016","journal-title":"arXiv preprint arXiv 1610 02984"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298640"},{"key":"ref9","first-page":"6402","article-title":"Simple and scalable predictive uncertainty estimation using deep ensembles","author":"lakshminarayanan","year":"2017","journal-title":"Advances in neural information processing systems"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2005.10.010"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/TSSC.1970.300339"},{"key":"ref45","first-page":"8026","article-title":"Pytorch: An imperative style, high-performance deep learning library","author":"paszke","year":"2019","journal-title":"Advances in neural information processing systems"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1007\/3-540-45665-1_6"},{"key":"ref47","first-page":"4873","article-title":"Stochastic gradient descent as approximate bayesian inference","volume":"18","author":"mandt","year":"2017","journal-title":"The Journal of Machine Learning Research"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1007\/3-540-60298-4_238"},{"key":"ref42","article-title":"Character-level Convolutional Networks for Text Classification","author":"zhang","year":"2015","journal-title":"arXiv 1509 01626"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46379-7_5"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/W16-2301"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1002\/cjs.5550340410"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.173"},{"article-title":"Consistent estimators for learning to defer to an expert","year":"2020","author":"mozannar","key":"ref26"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01237-3_34"},{"key":"ref25","article-title":"Selective classification for deep neural networks","volume":"abs 1705 8500","author":"geifman","year":"2017","journal-title":"CoRR"}],"event":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","start":{"date-parts":[[2021,12,13]]},"location":"Pasadena, CA, USA","end":{"date-parts":[[2021,12,16]]}},"container-title":["2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9679834\/9679948\/09680000.pdf?arnumber=9680000","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,10]],"date-time":"2022-05-10T16:58:02Z","timestamp":1652201882000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9680000\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,12]]},"references-count":47,"URL":"https:\/\/doi.org\/10.1109\/icmla52953.2021.00050","relation":{},"subject":[],"published":{"date-parts":[[2021,12]]}}}