{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,23]],"date-time":"2024-10-23T04:37:07Z","timestamp":1729658227877,"version":"3.28.0"},"reference-count":28,"publisher":"IEEE","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2016,12]]},"DOI":"10.1109\/icmla.2016.0046","type":"proceedings-article","created":{"date-parts":[[2017,2,7]],"date-time":"2017-02-07T20:39:53Z","timestamp":1486499993000},"page":"233-239","source":"Crossref","is-referenced-by-count":43,"title":["Advanced Image Classification Using Wavelets and Convolutional Neural Networks"],"prefix":"10.1109","author":[{"given":"Travis","family":"Williams","sequence":"first","affiliation":[]},{"given":"Robert","family":"Li","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref10","doi-asserted-by":"crossref","first-page":"674","DOI":"10.1109\/34.192463","article-title":"A theory for multiresolution signal decomposition: the wavelet representation","volume":"11","author":"mallat","year":"1989","journal-title":"IEEE Trans Patt Anal Mach Intell"},{"key":"ref11","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1007\/978-1-4612-2544-7_17","article-title":"The stationary wavelet transform and some statistical applications","volume":"103","author":"nason","year":"1995","journal-title":"Lectures Notes in Statistics"},{"article-title":"Wavelets and Filter Banks","year":"1996","author":"strang","key":"ref12"},{"article-title":"Introduction to Wavelets and Wavelet Transforms: A Primer","year":"1998","author":"burrus","key":"ref13"},{"key":"ref14","first-page":"21","article-title":"Wavelet Thresholding for Image De-noising","author":"sihag","year":"2011","journal-title":"International Conference on VLSI Communication & Instrumentation"},{"key":"ref15","article-title":"Neural Networks and Deep Learning","author":"nielsen","year":"2015","journal-title":"Determination Press"},{"key":"ref16","article-title":"Stochastic pooling for regularization of deep convolutional neural networks","author":"zeiler","year":"2013","journal-title":"Proc of the Int Conf on Learning Representations (ICLR)"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-11740-9_34"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP.2013.6638312"},{"article-title":"Improving Neural Networks with Dropout","year":"2013","author":"srivastava","key":"ref19"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-7908-2604-3_16"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/SECON.2016.7506768"},{"key":"ref27","article-title":"Exercise: Implement Deep Networks for Digit Classification","author":"ng","year":"2011","journal-title":"UFLDL Tutorial"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1561\/2000000039"},{"key":"ref6","article-title":"Learning multiple layers of features from tiny images","author":"krizhevsky","year":"2009","journal-title":"Technical Report TR-2009"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/5.726791"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/78.365291"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1063\/1.4823126"},{"key":"ref2","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1109\/MCI.2010.938364","article-title":"Deep Machine Learning-A New Frontier in Artificial Intelligence Research","volume":"5","author":"itamar","year":"2010","journal-title":"Computational Intelligence Magazine IEEE"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TFSA.1994.467330"},{"key":"ref1","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1109\/MSP.2010.936730","article-title":"Machine Learning in Medical Imaging","volume":"27","author":"yang","year":"2010","journal-title":"IEEE Signal Processing Magazine"},{"key":"ref20","article-title":"Batch normalization: Accelerating deep network training by reducing internal covariate shift","author":"ioffe","year":"2015","journal-title":"Proceedings of The 32nd International Conference on Machine Learning"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.3844\/jcssp.2006.735.739"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2014.2335751"},{"key":"ref24","article-title":"MatConvNet-Convolutional Neural Networks for MATLAB","author":"vedaldi","year":"2015","journal-title":"ACMMM"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.5121\/sipij.2010.1201"},{"key":"ref26","first-page":"3371","article-title":"Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion","volume":"11","author":"vincent","year":"2010","journal-title":"J Mach Learn Res"},{"key":"ref25","article-title":"Adam: A Method for Stochastic Optimization","author":"kingma","year":"2015","journal-title":"International Conference on Learning Representations"}],"event":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","start":{"date-parts":[[2016,12,18]]},"location":"Anaheim, CA, USA","end":{"date-parts":[[2016,12,20]]}},"container-title":["2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/7835817\/7838104\/07838150.pdf?arnumber=7838150","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,9,18]],"date-time":"2019-09-18T11:08:33Z","timestamp":1568804913000},"score":1,"resource":{"primary":{"URL":"http:\/\/ieeexplore.ieee.org\/document\/7838150\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,12]]},"references-count":28,"URL":"https:\/\/doi.org\/10.1109\/icmla.2016.0046","relation":{},"subject":[],"published":{"date-parts":[[2016,12]]}}}