{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,22]],"date-time":"2024-10-22T16:40:37Z","timestamp":1729615237143,"version":"3.28.0"},"reference-count":30,"publisher":"IEEE","license":[{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,12]]},"DOI":"10.1109\/ickg52313.2021.00015","type":"proceedings-article","created":{"date-parts":[[2022,1,14]],"date-time":"2022-01-14T15:39:53Z","timestamp":1642174793000},"page":"38-45","source":"Crossref","is-referenced-by-count":10,"title":["An Empirical Study of Deep Learning Frameworks for Melanoma Cancer Detection using Transfer Learning and Data Augmentation"],"prefix":"10.1109","author":[{"given":"Divya","family":"Gangwani","sequence":"first","affiliation":[]},{"given":"Qianxin","family":"Liang","sequence":"additional","affiliation":[]},{"given":"Shuwen","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Xingquan","family":"Zhu","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1148\/radiol.2019190372"},{"key":"ref10","article-title":"A deep learning approach for modeling of geothermal energy prediction","volume":"18","author":"gangwani","year":"2020","journal-title":"International Journal of Computer Science and Information Security (IJCSIS)"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1093\/annonc\/mdy166"},{"key":"ref12","article-title":"Deep residual learning for image recognition (2015)","author":"he","year":"2016","journal-title":"ArXiv Preprint"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0217293"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.2971225"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2019.00333"},{"key":"ref16","first-page":"1097","article-title":"Imagenet classification with deep convolutional neural networks","volume":"25","author":"krizhevsky","year":"2012","journal-title":"Advances in neural information processing systems"},{"key":"ref17","first-page":"49","article-title":"Skin lesion classification from dermoscopic images using deep learning techniques","author":"lopez","year":"2017","journal-title":"2017 13th IASTED International Conference on Biomedical Engineering (BioMed) BioMed"},{"key":"ref18","article-title":"Image classification of melanoma, nevus and seborrheic keratosis by deep neural network ensemble","author":"matsunaga","year":"2017","journal-title":"ArXiv Preprint"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/ISBI.2017.7950523"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2018.2890127"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2019.00330"},{"key":"ref27","article-title":"Convolutional neural network committees for melanoma classification with clas-sical and expert knowledge based image transforms data augmentation","author":"vasconcelos","year":"2017","journal-title":"ArXiv Preprint"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.2139\/ssrn.3551811"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/ICCC51575.2020.9344949"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP.2019.8802982"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/ISRITI48646.2019.9034624"},{"key":"ref8","first-page":"115","volume":"542","author":"esteva","year":"2017","journal-title":"Dermatologist-level classification of skin cancer with deep neural networks nat"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.5815\/ijieeb.2020.02.04"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1007\/s10278-019-00182-7"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1007\/978-981-16-3067-5_16"},{"key":"ref1","article-title":"Skin cancer segmentation and classification with nabla-n and inception recurrent residual convolutional networks","author":"alom","year":"2019","journal-title":"ArXiv Preprint"},{"key":"ref20","article-title":"Automated skin lesion classification using ensemble of deep neural networks in isic 2018: Skin lesion analysis to-wards melanoma detection challenge","author":"milton","year":"2019","journal-title":"ArXiv Preprint"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2019.00336"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2020.101858"},{"key":"ref24","article-title":"Very deep convolutional networks for large-scale image recognition","author":"simonyan","year":"2014","journal-title":"ArXiv Preprint"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/ICMLA.2017.00-19"},{"key":"ref26","doi-asserted-by":"crossref","DOI":"10.1609\/aaai.v31i1.11231","article-title":"Inception-v4, inception-resnet and the impact of residual connections on learning","volume":"31","author":"szegedy","year":"2017","journal-title":"Proceedings of the AAAI Conference on Artificial Intelligence"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1007\/s10916-019-1334-1"}],"event":{"name":"2021 IEEE International Conference on Big Knowledge (ICBK)","start":{"date-parts":[[2021,12,7]]},"location":"Auckland, New Zealand","end":{"date-parts":[[2021,12,8]]}},"container-title":["2021 IEEE International Conference on Big Knowledge (ICBK)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9667543\/9667672\/09667699.pdf?arnumber=9667699","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,22]],"date-time":"2023-01-22T19:58:08Z","timestamp":1674417488000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9667699\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,12]]},"references-count":30,"URL":"https:\/\/doi.org\/10.1109\/ickg52313.2021.00015","relation":{},"subject":[],"published":{"date-parts":[[2021,12]]}}}