{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,7]],"date-time":"2024-09-07T22:03:45Z","timestamp":1725746625664},"reference-count":29,"publisher":"IEEE","license":[{"start":{"date-parts":[[2023,10,8]],"date-time":"2023-10-08T00:00:00Z","timestamp":1696723200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,10,8]],"date-time":"2023-10-08T00:00:00Z","timestamp":1696723200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023,10,8]]},"DOI":"10.1109\/icip49359.2023.10222058","type":"proceedings-article","created":{"date-parts":[[2023,9,11]],"date-time":"2023-09-11T17:58:31Z","timestamp":1694455111000},"page":"1440-1444","source":"Crossref","is-referenced-by-count":1,"title":["Exploring Self-Supervised Representation Learning for Low-Resource Medical Image Analysis"],"prefix":"10.1109","author":[{"given":"Soumitri","family":"Chattopadhyay","sequence":"first","affiliation":[{"name":"Jadavpur University"}]},{"given":"Soham","family":"Ganguly","sequence":"additional","affiliation":[{"name":"Jadavpur University"}]},{"given":"Sreejit","family":"Chaudhury","sequence":"additional","affiliation":[{"name":"Jadavpur University"}]},{"given":"Sayan","family":"Nag","sequence":"additional","affiliation":[{"name":"University of Toronto"}]},{"given":"Samiran","family":"Chattopadhyay","sequence":"additional","affiliation":[{"name":"Jadavpur University"}]}],"member":"263","reference":[{"article-title":"A simple framework for contrastive learning of visual representations","volume-title":"ICML","author":"Chen","key":"ref1"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.01549"},{"article-title":"Vicreg: Variance-invariance-covariance regularization for self-supervised learning","volume-title":"ICLR","author":"Bardes","key":"ref3"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-031-19809-0_38"},{"key":"ref5","article-title":"Swis: Self-supervised representation learning for offline signature verification","author":"Manna","year":"2022","journal-title":"IEEE ICIP"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2022.01.008"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00346"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-031-16452-1_22"},{"article-title":"Intriguing properties of contrastive losses","volume-title":"NeurIPS","author":"Chen","key":"ref10"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.7717\/peerj-cs.1045"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2019.03.009"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2019.101539"},{"article-title":"Moco pretraining improves representation and transferability of chest x-ray models","volume-title":"MIDL","author":"Sowrirajan","key":"ref14"},{"key":"ref15","article-title":"Self-supervised learning from 100 million medical images","author":"Ghesu","year":"2022","journal-title":"arXiv preprint arXiv:2201.01283"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58574-7_43"},{"key":"ref17","article-title":"Rethinking self-supervised learning: Small is beautiful","author":"Cao","year":"2021","journal-title":"arXiv preprint arXiv:2103.13559"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.278"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46466-4_5"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00393"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/tbme.2015.2496264"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1038\/srep27988"},{"article-title":"Labeled optical coherence tomography (oct) and chest x-ray images for classification","year":"2018","author":"Kermany","key":"ref23"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.3390\/technologies9010002"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00975"},{"article-title":"Improved deep metric learning with multi-class n-pair loss objective","volume-title":"NeurIPS","author":"Sohn","key":"ref26"},{"key":"ref27","first-page":"arXiv","article-title":"Combined scaling for open-vocabulary image classification","author":"Pham","year":"2021","journal-title":"arXiv e-prints"},{"article-title":"Pytorch: An imperative style, high-performance deep learning library","volume-title":"NeurIPS","author":"Paszke","key":"ref28"},{"article-title":"Self-supervised learning is more robust to dataset imbalance","volume-title":"ICLR","author":"Liu","key":"ref29"}],"event":{"name":"2023 IEEE International Conference on Image Processing (ICIP)","start":{"date-parts":[[2023,10,8]]},"location":"Kuala Lumpur, Malaysia","end":{"date-parts":[[2023,10,11]]}},"container-title":["2023 IEEE International Conference on Image Processing (ICIP)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/10221937\/10221892\/10222058.pdf?arnumber=10222058","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T20:14:18Z","timestamp":1709324058000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10222058\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10,8]]},"references-count":29,"URL":"https:\/\/doi.org\/10.1109\/icip49359.2023.10222058","relation":{},"subject":[],"published":{"date-parts":[[2023,10,8]]}}}