{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T01:09:05Z","timestamp":1740100145479,"version":"3.37.3"},"reference-count":18,"publisher":"IEEE","license":[{"start":{"date-parts":[[2021,9,19]],"date-time":"2021-09-19T00:00:00Z","timestamp":1632009600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,9,19]],"date-time":"2021-09-19T00:00:00Z","timestamp":1632009600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/100015539","name":"Australian Government","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100015539","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,9,19]]},"DOI":"10.1109\/icip42928.2021.9506646","type":"proceedings-article","created":{"date-parts":[[2021,8,23]],"date-time":"2021-08-23T21:08:41Z","timestamp":1629752921000},"page":"210-214","source":"Crossref","is-referenced-by-count":2,"title":["Boosting Deep Transfer Learning For Covid-19 Classification"],"prefix":"10.1109","author":[{"given":"Fouzia","family":"Altaf","sequence":"first","affiliation":[{"name":"Edith Cowan University,School of Science"}]},{"given":"Syed M.S.","family":"Islam","sequence":"additional","affiliation":[{"name":"Edith Cowan University,School of Science"}]},{"given":"Naeem K.","family":"Janjua","sequence":"additional","affiliation":[{"name":"Edith Cowan University,School of Science"}]},{"given":"Naveed","family":"Akhtar","sequence":"additional","affiliation":[{"name":"University of Western Australia.,Department of Computer Science"}]}],"member":"263","reference":[{"key":"ref10","first-page":"201178","article-title":"Regarding” artificial intelligence distinguishes covid-19 from community acquired pneumonia on chest ct","author":"ventura dadario","year":"2020","journal-title":"Radiology"},{"key":"ref11","article-title":"A deep learning algorithm using ct images to screen for corona virus disease (covid-19)","author":"wang","year":"2020","journal-title":"medRxiv"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1016\/j.eng.2020.04.010"},{"key":"ref13","first-page":"4700","article-title":"Densely connected convolutional networks","author":"huang","year":"2017","journal-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2010.939537"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2016.12.017"},{"key":"ref16","first-page":"2097","article-title":"Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases","author":"wang","year":"2017","journal-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition"},{"key":"ref17","article-title":"Sars-cov2 ct-scan dataset: A large dataset of real patientsct scans for sars-cov-2 identification","author":"soares","year":"2020","journal-title":"medRxiv"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/ACSSC.1993.342465"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1186\/s12967-020-02324-w"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1148\/ryai.2020200053"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"ref5","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-020-74164-z","article-title":"A comprehensive study on classification of covid-19 on computed tomography with pretrained convolutional neural networks","volume":"10","author":"pham","year":"2020","journal-title":"Scientific Reports"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2020.103795"},{"key":"ref7","article-title":"Covid-ct-dataset: a ct scan dataset about covid19","author":"zhao","year":"2020","journal-title":"arXiv preprint arXiv 2003 13874"},{"key":"ref2","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"lecun","year":"2015","journal-title":"Nature"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1007\/s00330-020-06827-4"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"}],"event":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","start":{"date-parts":[[2021,9,19]]},"location":"Anchorage, AK, USA","end":{"date-parts":[[2021,9,22]]}},"container-title":["2021 IEEE International Conference on Image Processing (ICIP)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9506008\/9506009\/09506646.pdf?arnumber=9506646","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,6,13]],"date-time":"2022-06-13T21:13:33Z","timestamp":1655154813000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9506646\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9,19]]},"references-count":18,"URL":"https:\/\/doi.org\/10.1109\/icip42928.2021.9506646","relation":{},"subject":[],"published":{"date-parts":[[2021,9,19]]}}}