{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T00:07:58Z","timestamp":1730246878297,"version":"3.28.0"},"reference-count":31,"publisher":"IEEE","license":[{"start":{"date-parts":[[2019,9,1]],"date-time":"2019-09-01T00:00:00Z","timestamp":1567296000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2019,9,1]],"date-time":"2019-09-01T00:00:00Z","timestamp":1567296000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2019,9,1]],"date-time":"2019-09-01T00:00:00Z","timestamp":1567296000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019,9]]},"DOI":"10.1109\/icip.2019.8803791","type":"proceedings-article","created":{"date-parts":[[2019,8,26]],"date-time":"2019-08-26T15:32:48Z","timestamp":1566833568000},"page":"849-853","source":"Crossref","is-referenced-by-count":2,"title":["Efficient Codebook and Factorization for Second Order Representation Learning"],"prefix":"10.1109","author":[{"given":"Pierre","family":"Jacob","sequence":"first","affiliation":[]},{"given":"David","family":"Picard","sequence":"additional","affiliation":[]},{"given":"Aymeric","family":"Histace","sequence":"additional","affiliation":[]},{"given":"Edouard","family":"Klein","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref31","article-title":"Deep metric learning with hierarchical triplet loss","author":"weifeng","year":"2018","journal-title":"the European Conference on Computer Vision (ECCV)"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.47"},{"key":"ref10","article-title":"Hadamard Product for Low-rank Bilinear Pooling","author":"kim","year":"2017","journal-title":"International Conference on Learning Representations"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.743"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2013.207"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.572"},{"article-title":"Deep fishernet for object classification","year":"2016","author":"tang","key":"ref14"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.613"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.434"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.229"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01219-9_22"},{"key":"ref19","article-title":"The Caltech-UCSD Birds-200-2011 Dataset","author":"wah","year":"2011","journal-title":"Tech Rep CNS-TR-2011-001"},{"key":"ref4","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1007\/978-3-642-15561-1_11","article-title":"Im-´ proving the fisher kernel for large-scale image classification","author":"perronnin","year":"2010","journal-title":"Computer Vision – ECCV 2010"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.94"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1145\/3209978.3210036"},{"key":"ref27","first-page":"4170","article-title":"Learning deep embeddings with histogram loss","author":"ustinova","year":"2016","journal-title":"Advances in Neural IInformation Processing Systems"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP.2016.7532347"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.309"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP.2011.6116641"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.170"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP.2018.8451817"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.555"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.41"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1016\/j.cviu.2013.02.004"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1145\/2502081.2502171"},{"key":"ref21","first-page":"2811","article-title":"Object based scene representations using fisher scores of local subspace projections","volume":"29","author":"dixit","year":"2016","journal-title":"Advances in neural information processing systems"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref23","article-title":"Very deep convolutional networks for large-scale image recognition","volume":"abs 1409 1556","author":"simonyan","year":"2014","journal-title":"CoRR"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/ICCVW.2013.77"},{"key":"ref25","first-page":"1857","article-title":"Improved deep metric learning with multi-class n-pair loss objective","volume":"29","author":"sohn","year":"2016","journal-title":"Advances in neural information processing systems"}],"event":{"name":"2019 IEEE International Conference on Image Processing (ICIP)","start":{"date-parts":[[2019,9,22]]},"location":"Taipei, Taiwan","end":{"date-parts":[[2019,9,25]]}},"container-title":["2019 IEEE International Conference on Image Processing (ICIP)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/8791230\/8799366\/08803791.pdf?arnumber=8803791","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,18]],"date-time":"2022-07-18T11:32:16Z","timestamp":1658143936000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8803791\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,9]]},"references-count":31,"URL":"https:\/\/doi.org\/10.1109\/icip.2019.8803791","relation":{},"subject":[],"published":{"date-parts":[[2019,9]]}}}