{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,22]],"date-time":"2024-10-22T17:47:46Z","timestamp":1729619266986,"version":"3.28.0"},"reference-count":37,"publisher":"IEEE","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018,11]]},"DOI":"10.1109\/icdmw.2018.00064","type":"proceedings-article","created":{"date-parts":[[2019,2,12]],"date-time":"2019-02-12T01:55:06Z","timestamp":1549936506000},"page":"391-398","source":"Crossref","is-referenced-by-count":0,"title":["Learning via Social Preference: A Coarse-to-Fine Training Strategy for Style Transfer Systems"],"prefix":"10.1109","author":[{"given":"Zhuoqi","family":"Ma","sequence":"first","affiliation":[]},{"given":"Nannan","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yi","family":"Hao","sequence":"additional","affiliation":[]},{"given":"Jie","family":"Li","sequence":"additional","affiliation":[]},{"given":"Xinbo","family":"Gao","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref33","article-title":"Adam: A method for stochastic optimization","author":"kingma","year":"2015","journal-title":"International Conference on Learning Representations"},{"key":"ref32","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmentation","author":"ronneberger","year":"2015","journal-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention"},{"key":"ref31","first-page":"2121","article-title":"Adaptive subgradient methods for online learning and stochastic optimization","volume":"12","author":"duchi","year":"2011","journal-title":"Journal of Machine Learning Research"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1145\/2487575.2488200"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2016.06.070"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2003.819861"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2014.2377181"},{"key":"ref34","article-title":"Divide the gradient by a running average of its recent magnitude. coursera: Neural networks for machine learning","author":"tieleman","year":"2017","journal-title":"Technical Report"},{"journal-title":"Auto-encoding variational bayes","year":"2013","author":"kingma","key":"ref10"},{"key":"ref11","first-page":"2672","article-title":"Generative adversarial nets","author":"goodfellow","year":"2014","journal-title":"Advances in neural information processing systems"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.632"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2017.2651375"},{"journal-title":"IEEE Transactions on Circuits and Systems for Video Technology","article-title":"Anchored neighborhood index for face sketch synthesis","year":"2017","key":"ref14"},{"key":"ref15","first-page":"149","article-title":"Image stylization by oil paint filtering using color palettes","author":"semmo","year":"2015","journal-title":"The Workshop on Computational Aesthetics Eurographics Association"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1145\/383259.383295"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2008.222"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2013.2258174"},{"key":"ref19","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"lecun","year":"2015","journal-title":"Nature"},{"journal-title":"On convergence and stability of gans","year":"2017","author":"kodali","key":"ref28"},{"key":"ref4","first-page":"3104","article-title":"Sequence to sequence learning with neural networks","author":"sutskever","year":"2014","journal-title":"Advances in neural information processing systems"},{"key":"ref27","first-page":"5767","article-title":"Improved training of wasserstein gans","author":"gulrajani","year":"2017","journal-title":"Advances in neural information processing systems"},{"key":"ref3","first-page":"5","article-title":"Lifelong machine learning systems: Beyond learning algorithms","volume":"13","author":"silver","year":"2013","journal-title":"Lifelong Machine Learning AAAI Spring Symposium Series"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-013-0645-9"},{"journal-title":"An online learning approach to generative adversarial networks","year":"2017","author":"grnarova","key":"ref29"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.sigpro.2016.06.014"},{"key":"ref8","article-title":"Very deep convolutional networks for large-scale image recognition","author":"simonyan","year":"2015","journal-title":"International Conference on Learning Representations"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1145\/3092919.3092920"},{"key":"ref2","doi-asserted-by":"crossref","DOI":"10.15215\/aupress\/9781897425084.01","author":"anderson","year":"2008","journal-title":"The Theory and Practice of Online Learning"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2017.11.008"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1613\/jair.301"},{"key":"ref20","first-page":"1097","article-title":"Imagenet classification with deep convolutional neural networks","author":"krizhevsky","year":"2012","journal-title":"Advances in neural information processing systems"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.272"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.265"},{"key":"ref24","first-page":"694","article-title":"Perceptual losses for real-time style transfer and super-resolution","author":"johnson","year":"2016","journal-title":"European Conference on Computer Vision"},{"key":"ref23","article-title":"Visual attribute transfer through deep image analogy","volume":"36","author":"liao","year":"2017","journal-title":"ACM Transactions on Graphics( TOG)"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.244"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.296"}],"event":{"name":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","start":{"date-parts":[[2018,11,17]]},"location":"Singapore, Singapore","end":{"date-parts":[[2018,11,20]]}},"container-title":["2018 IEEE International Conference on Data Mining Workshops (ICDMW)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/8626049\/8637356\/08637556.pdf?arnumber=8637556","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,13]],"date-time":"2023-09-13T15:19:15Z","timestamp":1694618355000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8637556\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,11]]},"references-count":37,"URL":"https:\/\/doi.org\/10.1109\/icdmw.2018.00064","relation":{},"subject":[],"published":{"date-parts":[[2018,11]]}}}