{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T21:56:33Z","timestamp":1730238993895,"version":"3.28.0"},"reference-count":52,"publisher":"IEEE","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018,11]]},"DOI":"10.1109\/icdmw.2018.00050","type":"proceedings-article","created":{"date-parts":[[2019,2,11]],"date-time":"2019-02-11T20:55:06Z","timestamp":1549918506000},"page":"299-307","source":"Crossref","is-referenced-by-count":18,"title":["Voxelwise 3D Convolutional and Recurrent Neural Networks for Epilepsy and Depression Diagnostics from Structural and Functional MRI Data"],"prefix":"10.1109","author":[{"given":"Marina","family":"Pominova","sequence":"first","affiliation":[]},{"given":"Alexey","family":"Artemov","sequence":"additional","affiliation":[]},{"given":"Maksim","family":"Sharaev","sequence":"additional","affiliation":[]},{"given":"Ekaterina","family":"Kondrateva","sequence":"additional","affiliation":[]},{"given":"Alexander","family":"Bernstein","sequence":"additional","affiliation":[]},{"given":"Evgeny","family":"Burnaev","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-99978-4_24"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2016.12.036"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/ISBI.2017.7950647"},{"journal-title":"Alzheimer's disease diagnostics by a deeply supervised adaptable 3D convolutional network","year":"2016","author":"hosseini-asl","key":"ref32"},{"journal-title":"VoxResNet Deep voxelwise residual networks for volumetric brain segmentation","year":"2016","author":"chen","key":"ref31"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/3DV.2016.79"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1016\/j.conb.2003.09.012"},{"journal-title":"Learning representations from EEG with deep recurrent-convolutional neural networks","year":"2015","author":"bashivan","key":"ref36"},{"journal-title":"Learning neural markers of schizophrenia disorder using recurrent neural networks","year":"2017","author":"dakka","key":"ref35"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-67389-9_42"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0036733"},{"key":"ref27","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1016\/j.eplepsyres.2013.01.004","article-title":"Assessing hippocampal functional reserve in temporal lobe epilepsy: a multi-voxel pattern analysis of fmri data","volume":"105","author":"bonnici","year":"2013","journal-title":"Epilepsy Research"},{"key":"ref29","first-page":"424","article-title":"3d u-net: learning dense volumetric segmentation from sparse annotation","author":"\u00e7i\u00e7ek","year":"2016","journal-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention"},{"key":"ref2","doi-asserted-by":"crossref","first-page":"291","DOI":"10.2165\/00023210-200216050-00002","article-title":"Mood disorders in patients with epilepsy","volume":"16","author":"harden","year":"2002","journal-title":"CNS Drugs"},{"key":"ref1","doi-asserted-by":"crossref","first-page":"958","DOI":"10.1111\/epi.12605","article-title":"An unknown quantitythe worldwide prevalence of epilepsy","volume":"55","author":"bell","year":"2014","journal-title":"Epilepsia"},{"key":"ref20","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"lecun","year":"2015","journal-title":"Nature"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-10590-1_38"},{"key":"ref21","first-page":"806","article-title":"Cnn features off-the-shelf: an astounding baseline for recognition","author":"sharif razavian","year":"2014","journal-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops"},{"key":"ref24","doi-asserted-by":"crossref","first-page":"883","DOI":"10.1002\/hbm.21076","article-title":"Default mode network abnormalities in mesial temporal lobe epilepsy: a study combining fmri and dti","volume":"32","author":"liao","year":"2011","journal-title":"Human Brain Mapping"},{"key":"ref23","doi-asserted-by":"crossref","first-page":"741","DOI":"10.1111\/j.1528-1167.2007.01485.x","article-title":"Voxel-based morphometry of temporal lobe epilepsy: An introduction and review of the literature","volume":"49","author":"keller","year":"2008","journal-title":"Epilepsia"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1046\/j.1528-1157.2002.20501.x"},{"key":"ref25","first-page":"jnnp-2009","article-title":"Role of resting state functional connectivity mri in presurgical investigation of mesial temporal lobe epilepsy","author":"bettus","year":"2010","journal-title":"Journal of Neurology Neurosurgery & Psychiatry"},{"key":"ref50","first-page":"273","article-title":"One-class SVM with privileged information and its application to malware detection","author":"smolyakov","year":"2016","journal-title":"IEEE International Conference on Data Mining Workshops ICDM Workshops 2016"},{"key":"ref51","article-title":"Efficiency of conformalized ridge regression","volume":"abs 1404 2083","author":"vovk","year":"2014","journal-title":"CoRR"},{"key":"ref52","first-page":"45","article-title":"Conformalized kernel ridge regression","author":"nazarov","year":"2016","journal-title":"15th IEEE International Conference on Machine Learning and Applications ICMLA 2016"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1155\/2017\/3609821"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/DSAA.2018.00071"},{"key":"ref11","doi-asserted-by":"crossref","first-page":"656","DOI":"10.1016\/j.biopsych.2007.08.020","article-title":"Pattern classification of sad facial processing: toward the development of neurobiological markers in depression","volume":"63","author":"fu","year":"2008","journal-title":"Biological Psychiatry"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1093\/brain\/aws059"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2002.806283"},{"journal-title":"Machine learning approaches in medical image analysis From detection to diagnosis","year":"2016","author":"de bruijne","key":"ref14"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2008.11.007"},{"key":"ref16","doi-asserted-by":"crossref","first-page":"619","DOI":"10.1134\/S1064226915060042","article-title":"On an iterative algorithm for calculating weighted principal components","volume":"60","author":"chernova","year":"2015","journal-title":"Journal of Communications Technology and Electronics"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2012.01.021"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.3389\/fninf.2014.00014"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1089\/brain.2012.0073"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1016\/j.yebeh.2012.01.007"},{"key":"ref3","first-page":"369","article-title":"Mood disorders in patients with epilepsy","volume":"59","author":"dudra-jastrz\u00eabska","year":"2007","journal-title":"Pharmacological Reports"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.eplepsyres.2015.09.005"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1002\/ana.24341"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-017-10707-1"},{"key":"ref49","article-title":"Influence of resampling on accuracy of imbalanced classification","volume":"9875","author":"papanov","year":"2015","journal-title":"Proc SPIE 9875 Eighth International Conference on Machine Vision"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1016\/j.procs.2010.11.036"},{"key":"ref9","doi-asserted-by":"crossref","first-page":"1977","DOI":"10.1111\/epi.12375","article-title":"Proposal for a magnetic resonance imaging protocol for the detection of epileptogenic lesions at early outpatient stages","volume":"54","author":"wellmer","year":"2013","journal-title":"Epilepsia"},{"key":"ref46","doi-asserted-by":"crossref","first-page":"646","DOI":"10.1134\/S106422691606005X","article-title":"The influence of parameter initialization on the training time and accuracy of a nonlinear regression model","volume":"61","author":"erofeev","year":"2016","journal-title":"Journal of Communications Technology and Electronics"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-73013-4_23"},{"key":"ref48","article-title":"Model selection for anomaly detection","volume":"9875","author":"smolyakov","year":"2015","journal-title":"Proc SPIE 9875 Eighth International Conference on Machine Vision"},{"key":"ref47","doi-asserted-by":"crossref","first-page":"1630","DOI":"10.1134\/S0005117913100044","article-title":"On a method for constructing ensembles of regression models","volume":"74","author":"prikhod'ko","year":"2013","journal-title":"Automation and Remote Control"},{"journal-title":"Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift","year":"2015","author":"ioffe","key":"ref42"},{"journal-title":"Very Deep Convolutional Networks for Large-scale Image Recognition","year":"2014","author":"simonyan","key":"ref41"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.74"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1162\/neco.1997.9.8.1735"}],"event":{"name":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","start":{"date-parts":[[2018,11,17]]},"location":"Singapore, Singapore","end":{"date-parts":[[2018,11,20]]}},"container-title":["2018 IEEE International Conference on Data Mining Workshops (ICDMW)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/8626049\/8637356\/08637478.pdf?arnumber=8637478","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,3,11]],"date-time":"2019-03-11T20:05:32Z","timestamp":1552334732000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8637478\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,11]]},"references-count":52,"URL":"https:\/\/doi.org\/10.1109\/icdmw.2018.00050","relation":{},"subject":[],"published":{"date-parts":[[2018,11]]}}}