{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T12:35:43Z","timestamp":1725798943194},"reference-count":41,"publisher":"IEEE","license":[{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100015803","name":"Tencent","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100015803","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023,4]]},"DOI":"10.1109\/icde55515.2023.00087","type":"proceedings-article","created":{"date-parts":[[2023,7,26]],"date-time":"2023-07-26T17:51:13Z","timestamp":1690393873000},"page":"1071-1083","source":"Crossref","is-referenced-by-count":1,"title":["Incremental Learning for Multi-Interest Sequential Recommendation"],"prefix":"10.1109","author":[{"given":"Zhikai","family":"Wang","sequence":"first","affiliation":[{"name":"Shanghai Jiao Tong University,Department of Computer Science and Engineering,Shanghai,China"}]},{"given":"Yanyan","family":"Shen","sequence":"additional","affiliation":[{"name":"Shanghai Jiao Tong University,Department of Computer Science and Engineering,Shanghai,China"}]}],"member":"263","reference":[{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1145\/3460231.3474239"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2019.01.012"},{"key":"ref12","first-page":"1479","article-title":"How to Retrain Recommender System? A Sequential Meta-Learning Method","author":"huang","year":"2020","journal-title":"Proceedings of ACM SIGIR International Conference on Research and Development in Information Retrieval"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM.2016.0030"},{"key":"ref15","article-title":"Progressive Neural Networks","author":"rusu","year":"2016","journal-title":"ArXiv"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/ICPR.2018.8545895"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00419"},{"key":"ref36","article-title":"Measuring Catastrophic Forgetting in Neural Networks","author":"kemker","year":"2017","journal-title":"AAAI"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/ICDE51399.2021.00136"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00046"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2020\/300"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1145\/2766462.2767694"},{"key":"ref10","article-title":"A Practical Incremental Method to Train Deep CTR Models","author":"wang","year":"2020","journal-title":"ArXiv"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1145\/1772690.1772773"},{"key":"ref2","first-page":"565","article-title":"Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding","author":"chang","year":"2018","journal-title":"ArXiv"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDE.2019.00034"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.753"},{"key":"ref39","article-title":"One Person, One Model, One World: Learning Continual User Representation without Forgetting","author":"yuan","year":"2020","journal-title":"Proceedings of ACM SIGIR International Conference on Research and Development in Information Retrieval"},{"key":"ref16","article-title":"Net2Net: Accelerating Learning via Knowledge Transfer","author":"chen","year":"2015","journal-title":"ArXiv"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1007\/s11280-019-00693-x"},{"key":"ref19","article-title":"Dynamic Routing Between Capsules","author":"sabour","year":"2017","journal-title":"ArXiv"},{"key":"ref18","article-title":"Distilling the Knowledge in a Neural Network","author":"hinton","year":"2015","journal-title":"ArXiv"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1145\/2766462.2767755"},{"key":"ref23","first-page":"785","article-title":"Adam: A Method for Stochastic Optimization","author":"diederik p kingma","year":"2015","journal-title":"ICLRE"},{"key":"ref26","first-page":"1079","article-title":"Learning Tree-based Deep Model for Recommender Systems","author":"guo","year":"2018","journal-title":"KDD"},{"key":"ref25","first-page":"507","article-title":"Ups and Downs: Modeling the Visual Evolution of Fashion Trends with One-Class Collaborative Filtering","author":"bourdeau","year":"2016","journal-title":"WWW"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1145\/3357384.3357895"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/ICDE.2019.00088"},{"key":"ref22","article-title":"Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting","author":"zhou","year":"2020","journal-title":"ArXiv"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46493-0_37"},{"key":"ref28","first-page":"1479","article-title":"How to Retrain Recommender System? A Sequential Meta-Learning Method","author":"huang","year":"2020","journal-title":"Proceedings of ACM SIGIR International Conference on Research and Development in Information Retrieval"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1145\/3109859.3109896"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00256"},{"key":"ref8","first-page":"2671","article-title":"Practice on Long Sequential User Behavior Modeling for Click-Through Rate Prediction","author":"teredesai","year":"2019","journal-title":"ACM SIGKDD International Conference on Knowledge Discovery and Data Mining"},{"key":"ref7","article-title":"Rethinking Lifelong Sequential Recommendation with Incremental Multi-Interest Attention","author":"wu","year":"2021","journal-title":"ArXiv"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1145\/3383313.3412218"},{"key":"ref4","article-title":"Session-based Recommendations with Recurrent Neural Networks","author":"hidasi","year":"2015","journal-title":"ArXiv"},{"key":"ref3","first-page":"5941","article-title":"Deep Interest Evolution Network for Click-Through Rate Prediction","author":"zhou","year":"2018","journal-title":"AAAI"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1145\/3394486.3403344"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1145\/3357384.3357814"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1145\/2723372.2749444"}],"event":{"name":"2023 IEEE 39th International Conference on Data Engineering (ICDE)","start":{"date-parts":[[2023,4,3]]},"location":"Anaheim, CA, USA","end":{"date-parts":[[2023,4,7]]}},"container-title":["2023 IEEE 39th International Conference on Data Engineering (ICDE)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/10184508\/10184509\/10184671.pdf?arnumber=10184671","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,14]],"date-time":"2023-08-14T17:37:15Z","timestamp":1692034635000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10184671\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4]]},"references-count":41,"URL":"https:\/\/doi.org\/10.1109\/icde55515.2023.00087","relation":{},"subject":[],"published":{"date-parts":[[2023,4]]}}}