{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T21:48:57Z","timestamp":1730238537403,"version":"3.28.0"},"reference-count":49,"publisher":"IEEE","license":[{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002367","name":"Chinese Academy of Sciences","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002367","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023,4]]},"DOI":"10.1109\/icde55515.2023.00046","type":"proceedings-article","created":{"date-parts":[[2023,7,26]],"date-time":"2023-07-26T13:51:13Z","timestamp":1690379473000},"page":"517-529","source":"Crossref","is-referenced-by-count":14,"title":["When Spatio-Temporal Meet Wavelets: Disentangled Traffic Forecasting via Efficient Spectral Graph Attention Networks"],"prefix":"10.1109","author":[{"given":"Yuchen","family":"Fang","sequence":"first","affiliation":[{"name":"Beijing University of Posts and Telecommunications,China"}]},{"given":"Yanjun","family":"Qin","sequence":"additional","affiliation":[{"name":"Beijing University of Posts and Telecommunications,China"}]},{"given":"Haiyong","family":"Luo","sequence":"additional","affiliation":[{"name":"Chinese Academy of Sciences,Institute of Computing Technology,China"}]},{"given":"Fang","family":"Zhao","sequence":"additional","affiliation":[{"name":"Beijing University of Posts and Telecommunications,China"}]},{"given":"Bingbing","family":"Xu","sequence":"additional","affiliation":[{"name":"Chinese Academy of Sciences,Institute of Computing Technology,China"}]},{"given":"Liang","family":"Zeng","sequence":"additional","affiliation":[{"name":"Tsinghua University,China"}]},{"given":"Chenxing","family":"Wang","sequence":"additional","affiliation":[{"name":"Beijing University of Posts and Telecommunications,China"}]}],"member":"263","reference":[{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1145\/3340531.3411941"},{"journal-title":"Proceedings of ICLR","article-title":"Graph attention networks","year":"2018","author":"velickovic","key":"ref12"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1145\/3340531.3411940"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2020\/326"},{"journal-title":"Proceedings of NeurIPS","article-title":"Adaptive graph convolutional recurrent network for traffic forecasting","year":"2020","author":"bai","key":"ref11"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2019\/264"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58610-2_30"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i01.5477"},{"journal-title":"Proceedings of NeurIPS","article-title":"Do transformers really perform badly for graph representation?","year":"2021","author":"ying","key":"ref19"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00967"},{"journal-title":"Proceedings of NeurIPS","article-title":"Attention is all you need","year":"2017","author":"vaswani","key":"ref46"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i1.16088"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1016\/j.acha.2010.04.005"},{"article-title":"A generalization of transformer networks to graphs","year":"2020","author":"dwivedi","key":"ref47"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2013.50"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1145\/2939672.2939754"},{"journal-title":"Elements of Causal Inference Foundations and Learning Algorithms","year":"2017","author":"peters","key":"ref44"},{"key":"ref43","first-page":"2744","article-title":"Multivariate bayesian structural time series model","volume":"19","author":"qiu","year":"2018","journal-title":"J Mach Learn Res"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i01.5438"},{"journal-title":"Proceedings of ICLR","article-title":"Cost: Contrastive learning of disentangled seasonal-trend representations for time series forecasting","year":"2022","author":"woo","key":"ref8"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2022.3197640"},{"journal-title":"Proceedings of NeurIPS","article-title":"Convolutional neural networks on graphs with fast localized spectral filtering","year":"2016","author":"defferrard","key":"ref9"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2018\/505"},{"journal-title":"Proceedings of ICLR","article-title":"Diffusion convolutional recurrent neural network: Data-driven traffic forecasting","year":"2018","author":"li","key":"ref3"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1145\/3447548.3467430"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i5.16542"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1145\/2736277.2741093"},{"journal-title":"Proceedings of ICML","article-title":"Simple and deep graph convolutional networks","year":"2020","author":"chen","key":"ref35"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i04.5758"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v33i01.3301922"},{"journal-title":"Proceedings of ICML","article-title":"Conditional temporal neural processes with covariance loss","year":"2021","author":"yoo","key":"ref36"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1145\/3448891.3448892"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2020.2979670"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i12.17325"},{"journal-title":"Proceedings of NeurIPS","article-title":"Sequence to sequence learning with neural networks","year":"2014","author":"sutskever","key":"ref32"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/ICDE.2018.00058"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDE51399.2021.00153"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1145\/3511808.3557540"},{"article-title":"Cdgnet: A cross-time dynamic graph-based deep learning model for traffic forecasting","year":"2021","author":"fang","key":"ref38"},{"key":"ref24","first-page":"136","article-title":"Integrating granger causality and vector auto-regression for traffic prediction of large-scale wlans","volume":"10","author":"lu","year":"2016","journal-title":"KSII Transactions on Internet and Information Systems (TIIS)"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.2307\/j.ctv14jx6sm"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2004.837813"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1061\/(ASCE)0733-947X(2003)129:6(664)"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611970104"},{"journal-title":"Proceedings of ICLR","article-title":"Graph wavelet neural network","year":"2019","author":"xu","key":"ref22"},{"journal-title":"IEEE Transactions on Knowledge and Data Engineering","article-title":"Semi-supervised air quality forecasting via self-supervised hierarchical graph neural network","year":"2022","author":"han","key":"ref21"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1038\/nature14539"},{"key":"ref27","first-page":"22","article-title":"Short-term traffic and travel time prediction models","volume":"22","author":"van lint","year":"2012","journal-title":"Artificial Intelligence Applications to Critical Transportation Issues"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1155\/2018\/7068349"}],"event":{"name":"2023 IEEE 39th International Conference on Data Engineering (ICDE)","start":{"date-parts":[[2023,4,3]]},"location":"Anaheim, CA, USA","end":{"date-parts":[[2023,4,7]]}},"container-title":["2023 IEEE 39th International Conference on Data Engineering (ICDE)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/10184508\/10184509\/10184591.pdf?arnumber=10184591","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,14]],"date-time":"2023-08-14T13:34:53Z","timestamp":1692020093000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10184591\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4]]},"references-count":49,"URL":"https:\/\/doi.org\/10.1109\/icde55515.2023.00046","relation":{},"subject":[],"published":{"date-parts":[[2023,4]]}}}