{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,7]],"date-time":"2024-09-07T18:15:46Z","timestamp":1725732946915},"reference-count":26,"publisher":"IEEE","license":[{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,10]]},"DOI":"10.1109\/iccvw54120.2021.00115","type":"proceedings-article","created":{"date-parts":[[2021,11,24]],"date-time":"2021-11-24T20:40:09Z","timestamp":1637786409000},"page":"988-996","source":"Crossref","is-referenced-by-count":6,"title":["Instance Segmentation in CARLA: Methodology and Analysis for Pedestrian-oriented Synthetic Data Generation in Crowded Scenes"],"prefix":"10.1109","author":[{"given":"Maria","family":"Lyssenko","sequence":"first","affiliation":[]},{"given":"Christoph","family":"Gladisch","sequence":"additional","affiliation":[]},{"given":"Christian","family":"Heinzemann","sequence":"additional","affiliation":[]},{"given":"Matthias","family":"Woehrle","sequence":"additional","affiliation":[]},{"given":"Rudolph","family":"Triebel","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.350"},{"key":"ref11","first-page":"1","article-title":"CARLA: An open urban driving simulator","author":"dosovitskiy","year":"2017","journal-title":"Proc Annual Conf on Robot Learning"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-009-0275-4"},{"key":"ref13","doi-asserted-by":"crossref","first-page":"3354","DOI":"10.1109\/CVPR.2012.6248074","article-title":"Are we ready for autonomous driving? the kitti vision benchmark suite","author":"geiger","year":"2012","journal-title":"2012 IEEE Conference on Computer Vision and Pattern Recognition"},{"article-title":"A2D2: Audi Autonomous Driving Dataset","year":"2020","author":"geyer","key":"ref14"},{"journal-title":"arXiv preprint arXiv 2106 01111","article-title":"3db: A framework for debugging computer vision models","year":"2021","author":"leclerc","key":"ref15"},{"journal-title":"CoRR","article-title":"Microsoft COCO: common objects in context","year":"2014","author":"lin","key":"ref16"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW53098.2021.00013"},{"key":"ref18","first-page":"8024","article-title":"Pytorch: An imperative style, high-performance deep learning library","author":"paszke","year":"2019","journal-title":"Advances in Neural IInformation Processing Systems"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/ITSC45102.2020.9294422"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-35664-4_10"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/IVS.2019.8813817"},{"journal-title":"CoRR","article-title":"SUMMIT: A simulator for urban driving in massive mixed traffic","year":"2019","author":"cai","key":"ref6"},{"article-title":"nuscenes: A multimodal dataset for autonomous driving","year":"2019","author":"caesar","key":"ref5"},{"article-title":"carla-simulator","year":"2018","author":"codevilla","key":"ref8"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00715"},{"year":"2019","key":"ref2","article-title":"KI Absicherung – Safe AI for automated driving"},{"year":"2021","key":"ref9","article-title":"Pedestrian dataset"},{"year":"0","key":"ref1"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.352"},{"article-title":"dspace","year":"2021","author":"sela","key":"ref22"},{"article-title":"Congata","year":"2021","author":"sela","key":"ref21"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/ITSC45102.2020.9294708"},{"key":"ref23","first-page":"621","article-title":"Airsim: High-fidelity visual and physical simulation for autonomous vehicles","author":"shah","year":"2017","journal-title":"Field and Service Robotics"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/34.888718"},{"journal-title":"CoRR","article-title":"BDD100K: A diverse driving video database with scalable annotation tooling","year":"2018","author":"yu","key":"ref25"}],"event":{"name":"2021 IEEE\/CVF International Conference on Computer Vision Workshops (ICCVW)","start":{"date-parts":[[2021,10,11]]},"location":"Montreal, BC, Canada","end":{"date-parts":[[2021,10,17]]}},"container-title":["2021 IEEE\/CVF International Conference on Computer Vision Workshops (ICCVW)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9607382\/9607383\/09607548.pdf?arnumber=9607548","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,10]],"date-time":"2022-05-10T16:51:35Z","timestamp":1652201495000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9607548\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,10]]},"references-count":26,"URL":"https:\/\/doi.org\/10.1109\/iccvw54120.2021.00115","relation":{},"subject":[],"published":{"date-parts":[[2021,10]]}}}