{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T21:33:55Z","timestamp":1730237635163,"version":"3.28.0"},"reference-count":36,"publisher":"IEEE","license":[{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,10]]},"DOI":"10.1109\/iccv48922.2021.01577","type":"proceedings-article","created":{"date-parts":[[2022,2,28]],"date-time":"2022-02-28T17:08:02Z","timestamp":1646068082000},"page":"16056-16065","source":"Crossref","is-referenced-by-count":30,"title":["GP-S3Net: Graph-based Panoptic Sparse Semantic Segmentation Network"],"prefix":"10.1109","author":[{"given":"Ryan","family":"Razani","sequence":"first","affiliation":[{"name":"Huawei Noah’s Ark Lab,Toronto,Canada"}]},{"given":"Ran","family":"Cheng","sequence":"additional","affiliation":[{"name":"Huawei Noah’s Ark Lab,Toronto,Canada"}]},{"given":"Enxu","family":"Li","sequence":"additional","affiliation":[{"name":"Huawei Noah’s Ark Lab,Toronto,Canada"}]},{"given":"Ehsan","family":"Taghavi","sequence":"additional","affiliation":[{"name":"Huawei Noah’s Ark Lab,Toronto,Canada"}]},{"given":"Yuan","family":"Ren","sequence":"additional","affiliation":[{"name":"Huawei Noah’s Ark Lab,Toronto,Canada"}]},{"given":"Liu","family":"Bingbing","sequence":"additional","affiliation":[{"name":"Huawei Noah’s Ark Lab,Toronto,Canada"}]}],"member":"263","reference":[{"key":"ref33","article-title":"Learning object bounding boxes for 3d instance segmentation on point clouds","volume":"32","author":"yang","year":"2019","journal-title":"Advances in neural information processing systems"},{"key":"ref32","doi-asserted-by":"crossref","first-page":"3337","DOI":"10.3390\/s18103337","article-title":"Second: Sparsely embedded convolutional detection","volume":"18","author":"yan","year":"2018","journal-title":"SENSORS"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00910"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00651"},{"article-title":"Cylinder3d: An effective 3d framework for driving-scene lidar semantic segmentation","year":"2020","author":"zhou","key":"ref36"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/LRA.2018.2852843"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00407"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/LRA.2021.3060405"},{"article-title":"Tornado-net: multiview total variation semantic segmentation with diamond inception module","year":"2020","author":"gerdzhev","key":"ref11"},{"article-title":"Inductive representation learning on large graphs","year":"2017","author":"hamilton","key":"ref12"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00301"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.322"},{"article-title":"Lidar-based panoptic segmentation via dynamic shifting network","year":"2020","author":"hong","key":"ref15"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01112"},{"article-title":"Mopt: Multi-object panoptic tracking","year":"2020","author":"hurtado","key":"ref17"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00492"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00963"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-11009-3_11"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA48506.2021.9561305"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA48506.2021.9561171"},{"key":"ref3","first-page":"160172","article-title":"Density-based clustering based on hierarchical density estimates","author":"campello","year":"2013","journal-title":"Advances in Knowledge Discovery and Data Mining Lecture Notes in Computer Science"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00319"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/TRO.2021.3122069"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.01236"},{"key":"ref8","first-page":"655","article-title":"Salsanext: Fast semantic segmentation of lidar point clouds for autonomous driving","author":"cortinhal","year":"2020","journal-title":"2020 IEEE Intelligent Vehicles Symposium (IV)"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/34.1000236"},{"key":"ref2","first-page":"11621","article-title":"nuscenes: A multi-modal dataset for autonomous driving","author":"caesar","year":"2020","journal-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition"},{"key":"ref9","first-page":"226231","article-title":"A density-based algorithm for discovering clusters in large spatial databases with noise","volume":"96","author":"ester","year":"1996","journal-title":"KDD"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00939"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00963"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/IROS45743.2020.9340837"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.01298"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/IV47402.2020.9304596"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/IROS40897.2019.8967762"},{"key":"ref26","first-page":"5099","article-title":"Pointnet++: Deep hierarchical feature learning on point sets in a metric space","author":"qi","year":"2017","journal-title":"Advances in neural information processing systems"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00847"}],"event":{"name":"2021 IEEE\/CVF International Conference on Computer Vision (ICCV)","start":{"date-parts":[[2021,10,10]]},"location":"Montreal, QC, Canada","end":{"date-parts":[[2021,10,17]]}},"container-title":["2021 IEEE\/CVF International Conference on Computer Vision (ICCV)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9709627\/9709628\/09709940.pdf?arnumber=9709940","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,6,15]],"date-time":"2022-06-15T16:18:53Z","timestamp":1655309933000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9709940\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,10]]},"references-count":36,"URL":"https:\/\/doi.org\/10.1109\/iccv48922.2021.01577","relation":{},"subject":[],"published":{"date-parts":[[2021,10]]}}}