{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,8]],"date-time":"2025-04-08T14:05:25Z","timestamp":1744121125840,"version":"3.28.0"},"reference-count":38,"publisher":"IEEE","license":[{"start":{"date-parts":[[2019,10,1]],"date-time":"2019-10-01T00:00:00Z","timestamp":1569888000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2019,10,1]],"date-time":"2019-10-01T00:00:00Z","timestamp":1569888000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2019,10,1]],"date-time":"2019-10-01T00:00:00Z","timestamp":1569888000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019,10]]},"DOI":"10.1109\/iccv.2019.00926","type":"proceedings-article","created":{"date-parts":[[2020,2,28]],"date-time":"2020-02-28T10:27:52Z","timestamp":1582885672000},"page":"9166-9175","source":"Crossref","is-referenced-by-count":459,"title":["Expectation-Maximization Attention Networks for Semantic Segmentation"],"prefix":"10.1109","author":[{"given":"Xia","family":"Li","sequence":"first","affiliation":[]},{"given":"Zhisheng","family":"Zhong","sequence":"additional","affiliation":[]},{"given":"Jianlong","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Yibo","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Zhouchen","family":"Lin","sequence":"additional","affiliation":[]},{"given":"Hong","family":"Liu","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01240-3_17"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00256"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2019.01.006"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00813"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.556"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.660"},{"key":"ref36","first-page":"269","article-title":"Exfuse: Enhancing feature fusion for semantic segmentation","author":"zhang","year":"2018","journal-title":"ECCV"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00747"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00199"},{"key":"ref10","first-page":"768","article-title":"Cluster analysis of multivariate data: efficiency versus interpretability of classifications","volume":"21","author":"forgy","year":"1965","journal-title":"Biometrics"},{"key":"ref11","first-page":"3146","article-title":"Dual attention network for scene segmentation","author":"fu","year":"2019","journal-title":"CVPR"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2019.2895460"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.123"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.243"},{"key":"ref16","article-title":"Batch normalization: Accelerating deep network training by reducing internal covariate shift","author":"ioffe","year":"2015","journal-title":"arXiv preprint arXiv 1502 03167"},{"key":"ref17","first-page":"254","article-title":"Recurrent squeeze-and-excitation context aggregation net for single image deraining","author":"li","year":"2018","journal-title":"ECCV"},{"key":"ref18","first-page":"1858","article-title":"Symbolic graph reasoning meets convolutions","author":"liang","year":"2018","journal-title":"NeurIPS"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00085"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-015-0816-y"},{"key":"ref4","article-title":"Rethinking atrous convolution for semantic image segmentation","author":"chen","year":"2017","journal-title":"arXiv preprint arXiv 1706 05587"},{"key":"ref27","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmentation","author":"ronneberger","year":"2015","journal-title":"MICCAI"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00132"},{"key":"ref6","first-page":"350","article-title":"A2-nets: Double attention networks","author":"chen","year":"2018","journal-title":"NeurIPS"},{"key":"ref29","first-page":"5998","article-title":"Attention is all you need","author":"vaswani","year":"2017","journal-title":"NeurIPS"},{"key":"ref5","article-title":"Encoder-decoder with atrous separable convolution for semantic image segmentation","author":"chen","year":"2018","journal-title":"ECCV"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00254"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1111\/j.2517-6161.1977.tb01600.x"},{"key":"ref2","article-title":"Neural machine translation by jointly learning to align and translate","author":"bahdanau","year":"2014","journal-title":"arXiv preprint arXiv 1409 0473"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-009-0275-4"},{"key":"ref1","article-title":"Layer normalization","author":"ba","year":"2016","journal-title":"arXiv preprint arXiv 1607 06450"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01219-9_37"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.549"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2014.119"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.296"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1111\/1467-9868.00095"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.189"}],"event":{"name":"2019 IEEE\/CVF International Conference on Computer Vision (ICCV)","start":{"date-parts":[[2019,10,27]]},"location":"Seoul, Korea (South)","end":{"date-parts":[[2019,11,2]]}},"container-title":["2019 IEEE\/CVF International Conference on Computer Vision (ICCV)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/8972782\/9008105\/09009057.pdf?arnumber=9009057","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,17]],"date-time":"2022-07-17T21:52:04Z","timestamp":1658094724000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9009057\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,10]]},"references-count":38,"URL":"https:\/\/doi.org\/10.1109\/iccv.2019.00926","relation":{},"subject":[],"published":{"date-parts":[[2019,10]]}}}