{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,7]],"date-time":"2024-09-07T22:02:18Z","timestamp":1725746538142},"reference-count":52,"publisher":"IEEE","license":[{"start":{"date-parts":[[2021,10,28]],"date-time":"2021-10-28T00:00:00Z","timestamp":1635379200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2021,10,28]],"date-time":"2021-10-28T00:00:00Z","timestamp":1635379200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,10,28]],"date-time":"2021-10-28T00:00:00Z","timestamp":1635379200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100002701","name":"Ministry of Education","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002701","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,10,28]]},"DOI":"10.1109\/iccp53602.2021.9733609","type":"proceedings-article","created":{"date-parts":[[2022,3,16]],"date-time":"2022-03-16T19:55:00Z","timestamp":1647460500000},"page":"219-226","source":"Crossref","is-referenced-by-count":2,"title":["OccTransformers: Learning occupancy using attention"],"prefix":"10.1109","author":[{"given":"Bogdan","family":"Maxim","sequence":"first","affiliation":[{"name":"Technical University of Cluj-Napoca,Computer Science Departament,Cluj-Napoca,Romania"}]},{"given":"Sergiu","family":"Nedevschi","sequence":"additional","affiliation":[{"name":"Technical University of Cluj-Napoca,Computer Science Departament,Cluj-Napoca,Romania"}]}],"member":"263","reference":[{"key":"ref39","first-page":"216","article-title":"A papier-mâché approach to learning 3d surface generation","author":"groueix","year":"2018","journal-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition"},{"key":"ref38","first-page":"652","article-title":"Pointnet: Deep learning on point sets for 3d classification and segmentation","author":"qi","year":"2017","journal-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.701"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01240-3_43"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.253"},{"journal-title":"arXiv preprint arXiv 1708 05227","article-title":"Learning a multi-view stereo machine","year":"2017","author":"kar","key":"ref30"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01225-0_37"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1145\/37402.37422"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.420"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/3DV.2017.00017"},{"journal-title":"arXiv preprint arXiv 2103 05767","article-title":"Perceiver: General perception with iterative attention","year":"2021","author":"jaegle","key":"ref28"},{"journal-title":"2012 arXiv preprint arXiv","article-title":"Training data-efficient image transformers & distillation through attention","year":"2020","author":"touvron","key":"ref27"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46484-8_38"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/3DV.2017.00053"},{"journal-title":"arXiv preprint arXiv 1608 04236","article-title":"Generative and discriminative voxel modeling with convolutional neural networks","year":"2016","author":"brock","key":"ref1"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00105"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00604"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00725"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01130"},{"journal-title":"2012 arXiv preprint arXiv","article-title":"Canonical capsules: Unsupervised capsules in canonical pose","year":"2020","author":"sun","key":"ref23"},{"journal-title":"arXiv preprint arXiv 2010 10504","article-title":"An image is worth 16x16 words: Transformers for image recognition at scale","year":"2020","author":"dosovitskiy","key":"ref26"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00477"},{"journal-title":"arXiv preprint arXiv 1610 07214","article-title":"A learned representation for artistic style","year":"2016","author":"dumoulin","key":"ref50"},{"journal-title":"arXiv preprint arXiv 1512 00327","article-title":"Shapenet: An information-rich 3d model repository","year":"2015","author":"chang","key":"ref51"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00314"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01252-6_4"},{"key":"ref11","first-page":"40","article-title":"Learning representations and generative models for 3d point clouds","author":"achlioptas","year":"2018","journal-title":"International Conference on Machine Learning"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00572"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.264"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00459"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00025"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00609"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00700"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00491"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00765"},{"journal-title":"arXiv preprint arXiv 2006 04989","article-title":"Metasdf: Meta-learning signed distance functions","year":"2020","author":"sitzmann","key":"ref19"},{"journal-title":"arXiv preprint arXiv 1607","article-title":"Unsupervised learning of 3d structure from images","year":"2016","author":"rezende","key":"ref4"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00308"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/3DV.2015.9"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00209"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01267-0_23"},{"journal-title":"arXiv preprint arXiv 1610 07214","article-title":"Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling","year":"2016","author":"wu","key":"ref7"},{"journal-title":"arXiv preprint arXiv 1707 00408","article-title":"Modulating early visual processing by language","year":"2017","author":"de vries","key":"ref49"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01219-9_43"},{"journal-title":"arXiv preprint arXiv 2102 05988","article-title":"Lambdanetworks: Modeling long-range interactions without attention","year":"2021","author":"bello","key":"ref46"},{"journal-title":"arXiv preprint arXiv 1706 03762","article-title":"Attention is all you need","year":"2017","author":"vaswani","key":"ref45"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.01625"},{"journal-title":"arXiv preprint arXiv 1911 11698","article-title":"On the relation-ship between self-attention and convolutional layers","year":"2019","author":"cordonnier","key":"ref47"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00292"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.01006"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58558-7_7"},{"journal-title":"arXiv preprint arXiv 2005 06138","article-title":"A simple and scalable shape representation for 3d reconstruction","year":"2020","author":"michalkiewicz","key":"ref43"}],"event":{"name":"2021 IEEE 17th International Conference on Intelligent Computer Communication and Processing (ICCP)","start":{"date-parts":[[2021,10,28]]},"location":"Cluj-Napoca, Romania","end":{"date-parts":[[2021,10,30]]}},"container-title":["2021 IEEE 17th International Conference on Intelligent Computer Communication and Processing (ICCP)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9733401\/9733438\/09733609.pdf?arnumber=9733609","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,9]],"date-time":"2022-07-09T02:20:10Z","timestamp":1657333210000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9733609\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,10,28]]},"references-count":52,"URL":"https:\/\/doi.org\/10.1109\/iccp53602.2021.9733609","relation":{},"subject":[],"published":{"date-parts":[[2021,10,28]]}}}