{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T19:35:00Z","timestamp":1730230500838,"version":"3.28.0"},"reference-count":28,"publisher":"IEEE","license":[{"start":{"date-parts":[[2019,5,1]],"date-time":"2019-05-01T00:00:00Z","timestamp":1556668800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2019,5,1]],"date-time":"2019-05-01T00:00:00Z","timestamp":1556668800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2019,5,1]],"date-time":"2019-05-01T00:00:00Z","timestamp":1556668800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019,5]]},"DOI":"10.1109\/icassp.2019.8682290","type":"proceedings-article","created":{"date-parts":[[2019,4,17]],"date-time":"2019-04-17T20:01:56Z","timestamp":1555531316000},"page":"7958-7962","source":"Crossref","is-referenced-by-count":8,"title":["A Spiking Neural Network with Local Learning Rules Derived from Nonnegative Similarity Matching"],"prefix":"10.1109","author":[{"given":"Cengiz","family":"Pehlevan","sequence":"first","affiliation":[]}],"member":"263","reference":[{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611972825.10"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/ACSSC.2014.7094553"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-70087-8_34"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-68600-4_41"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1162\/neco_a_01007"},{"key":"ref15","article-title":"Manifold-tiling localized receptive fields are optimal in similarity-preserving neural networks","author":"sengupta","year":"2018","journal-title":"NeurIPS"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1111\/j.2517-6161.1996.tb02080.x"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1111\/j.1467-9868.2005.00503.x"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/ACSSC.2014.7094519"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1162\/NECO_a_00353"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1023\/B:VISI.0000042993.50813.60"},{"key":"ref4","first-page":"3653","article-title":"Unsupervised learning of an efficient short-term memory network","author":"vertechi","year":"2014","journal-title":"NeurIPS"},{"article-title":"The mnist database of handwritten digits","year":"1998","author":"lecun","key":"ref27"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/MM.2018.112130359"},{"key":"ref6","article-title":"Learning nonlinear dynamics in efficient, balanced spiking networks using local plasticity rules.","author":"alemi","year":"2018","journal-title":"AAAI"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.7554\/eLife.28295"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1162\/NECO_a_00745"},{"article-title":"Dictionary learning by dynamical neural networks","year":"2018","author":"lin","key":"ref7"},{"article-title":"A survey of neuromorphic computing and neural networks in hardware","year":"2017","author":"schuman","key":"ref2"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1162\/neco_a_01018"},{"key":"ref1","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"lecun","year":"2015","journal-title":"Nature"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1142\/S0129065714400012"},{"article-title":"Sparse coding by spiking neural networks: Convergence theory and computational results","year":"2017","author":"tang","key":"ref22"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pcbi.1001080"},{"key":"ref24","article-title":"Simple, efficient, and neural algorithms for sparse coding","author":"arora","year":"2015","journal-title":"Mach Learn Res"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1038\/381607a0"},{"article-title":"A correlation game for unsupervised learning yields computational interpretations of hebbian excitation, anti-hebbian inhibition, and synapse elimination","year":"2017","author":"seung","key":"ref26"},{"article-title":"Convergence of lca flows to (c) lasso solutions","year":"2016","author":"tang","key":"ref25"}],"event":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","start":{"date-parts":[[2019,5,12]]},"location":"Brighton, United Kingdom","end":{"date-parts":[[2019,5,17]]}},"container-title":["ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/8671773\/8682151\/08682290.pdf?arnumber=8682290","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,15]],"date-time":"2022-07-15T03:13:27Z","timestamp":1657854807000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8682290\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,5]]},"references-count":28,"URL":"https:\/\/doi.org\/10.1109\/icassp.2019.8682290","relation":{},"subject":[],"published":{"date-parts":[[2019,5]]}}}