{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T18:14:47Z","timestamp":1730225687087,"version":"3.28.0"},"reference-count":38,"publisher":"IEEE","license":[{"start":{"date-parts":[[2019,9,1]],"date-time":"2019-09-01T00:00:00Z","timestamp":1567296000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2019,9,1]],"date-time":"2019-09-01T00:00:00Z","timestamp":1567296000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2019,9,1]],"date-time":"2019-09-01T00:00:00Z","timestamp":1567296000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019,9]]},"DOI":"10.1109\/hpec.2019.8916463","type":"proceedings-article","created":{"date-parts":[[2019,11,29]],"date-time":"2019-11-29T12:11:36Z","timestamp":1575029496000},"page":"1-7","source":"Crossref","is-referenced-by-count":6,"title":["Deep-Learning Inferencing with High-Performance Hardware Accelerators"],"prefix":"10.1109","author":[{"given":"Luke","family":"Kljucaric","sequence":"first","affiliation":[]},{"given":"Alan D.","family":"George","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"year":"2018","journal-title":"Versal The First Adaptive Compute Acceleration Platform (ACAP)","key":"ref38"},{"year":"2018","journal-title":"Xilinx Power Estimator","key":"ref33"},{"year":"2018","journal-title":"SnowflakeServer","key":"ref32"},{"year":"2017","journal-title":"Geforce gtx 1080 ti","key":"ref31"},{"doi-asserted-by":"publisher","key":"ref30","DOI":"10.1109\/FPT.2016.7929549"},{"year":"2017","journal-title":"KNIGHTS MILL New Intel Processor for Machine Learning","key":"ref37"},{"year":"2017","author":"hennessy","journal-title":"Computer Architecture A Quantitative Approach","key":"ref36"},{"year":"2018","journal-title":"Intel PAC","key":"ref35"},{"year":"2017","journal-title":"NVIDIA Tesla P100 Architecture","key":"ref34"},{"doi-asserted-by":"publisher","key":"ref10","DOI":"10.1109\/5.726791"},{"year":"2011","author":"glorot","journal-title":"Fourteenth International Conference on Artificial Intelligence and Statistics","article-title":"Deep Sparse Rectifier Neural Networks","key":"ref11"},{"key":"ref12","article-title":"ImageNet Classification with Deep Convolutional Neural Networks","volume":"25","author":"krizhevsky","year":"2012","journal-title":"Neural Information Processing Systems"},{"doi-asserted-by":"publisher","key":"ref13","DOI":"10.1109\/CVPR.2015.7298594"},{"year":"2018","journal-title":"Adaptive Inference Acceleration","key":"ref14"},{"year":"2017","journal-title":"Zebra","key":"ref15"},{"year":"2018","journal-title":"OpenVINO Whitepaper","key":"ref16"},{"doi-asserted-by":"publisher","key":"ref17","DOI":"10.1145\/2647868.2654889"},{"year":"2018","author":"delaye","journal-title":"Integrating AI into Your Accelerated Cloud Applications","key":"ref18"},{"year":"2017","journal-title":"Nvidia tesla v100 gpu architecture","key":"ref19"},{"doi-asserted-by":"publisher","key":"ref28","DOI":"10.1016\/j.patcog.2012.06.021"},{"doi-asserted-by":"publisher","key":"ref4","DOI":"10.1109\/FPL.2009.5272559"},{"year":"2015","author":"ovtcharov","journal-title":"Accelerating deep convolutional neural networks using specialized hardware","key":"ref3"},{"year":"2018","journal-title":"Open VINO","key":"ref27"},{"doi-asserted-by":"publisher","key":"ref6","DOI":"10.1109\/ICDAR.2015.7333881"},{"doi-asserted-by":"publisher","key":"ref29","DOI":"10.1016\/j.patrec.2017.02.011"},{"doi-asserted-by":"publisher","key":"ref5","DOI":"10.1109\/ISCAS.2010.5537908"},{"doi-asserted-by":"publisher","key":"ref8","DOI":"10.1145\/2145694.2145704"},{"year":"2018","journal-title":"Using GPUs for Training Models in the Cloud","key":"ref7"},{"doi-asserted-by":"publisher","key":"ref2","DOI":"10.1145\/2684746.2689060"},{"doi-asserted-by":"publisher","key":"ref1","DOI":"10.1016\/S0031-3203(01)00178-9"},{"doi-asserted-by":"publisher","key":"ref9","DOI":"10.1561\/2000000039"},{"year":"2018","journal-title":"NVCaffe","key":"ref20"},{"year":"2018","journal-title":"Product specification","key":"ref22"},{"year":"2018","journal-title":"AI & Machine Learning Products","key":"ref21"},{"year":"2018","journal-title":"Knights Mill-Microarchitectures-Intel","key":"ref24"},{"year":"2018","journal-title":"Processor Specification","key":"ref23"},{"year":"2018","journal-title":"Intel Optimized Caffe*","key":"ref26"},{"year":"2018","journal-title":"Skylake Processor Specificaitons","key":"ref25"}],"event":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","start":{"date-parts":[[2019,9,24]]},"location":"Waltham, MA, USA","end":{"date-parts":[[2019,9,26]]}},"container-title":["2019 IEEE High Performance Extreme Computing Conference (HPEC)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/8910148\/8916214\/08916463.pdf?arnumber=8916463","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,18]],"date-time":"2022-07-18T14:47:02Z","timestamp":1658155622000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8916463\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,9]]},"references-count":38,"URL":"https:\/\/doi.org\/10.1109\/hpec.2019.8916463","relation":{},"subject":[],"published":{"date-parts":[[2019,9]]}}}