{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T17:22:54Z","timestamp":1730222574542,"version":"3.28.0"},"reference-count":55,"publisher":"IEEE","license":[{"start":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T00:00:00Z","timestamp":1725235200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T00:00:00Z","timestamp":1725235200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024,9,2]]},"DOI":"10.1109\/fpl64840.2024.00030","type":"proceedings-article","created":{"date-parts":[[2024,10,9]],"date-time":"2024-10-09T17:45:25Z","timestamp":1728495925000},"page":"156-163","source":"Crossref","is-referenced-by-count":0,"title":["Kratos: An FPGA Benchmark for Unrolled DNNs with Fine-Grained Sparsity and Mixed Precision"],"prefix":"10.1109","author":[{"given":"Xilai","family":"Dai","sequence":"first","affiliation":[{"name":"Cornell University,Department of Electrical and Computer Engineering"}]},{"given":"Yuzong","family":"Chen","sequence":"additional","affiliation":[{"name":"Cornell University,Department of Electrical and Computer Engineering"}]},{"given":"Mohamed S.","family":"Abdelfattah","sequence":"additional","affiliation":[{"name":"Cornell University,Department of Electrical and Computer Engineering"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1145\/3065386"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"journal-title":"arxiv preprint arxiv:1704.04861","article-title":"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications","year":"2017","author":"Howard","key":"ref3"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00474"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.48550\/arXiv.2010.11929"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.physd.2019.132306"},{"journal-title":"Advances in Neural Information Processing Systems (NIPS)","article-title":"Attention is All you Need","year":"2017","author":"Vaswani","key":"ref7"},{"journal-title":"North American Chapter of the Association for Computational Linguistics (ACL)","article-title":"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding","year":"2019","author":"Devlin","key":"ref8"},{"journal-title":"Advances in Neural Information Processing Systems (NIPS)","article-title":"Language models are unsupervised multitask learners","year":"2019","author":"Radford","key":"ref9"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.91"},{"journal-title":"arxiv preprint arxiv:1804.02767","article-title":"YOLOv3: An Incremental Improvement","year":"2018","author":"Redmon","key":"ref11"},{"article-title":"YOLOX: Exceeding YOLO Series in 2021","year":"2021","author":"Ge","key":"ref12"},{"article-title":"SSD: Single Shot MultiBox Detector","volume-title":"European Conference on Computer Vision (ECCV)","author":"Liu","key":"ref13","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-319-46448-0_2"},{"key":"ref14","first-page":"1135","article-title":"Learning both weights and connections for efficient neural networks","volume-title":"Proceedings of the 28th International Conference on Neural Information Processing Systems","volume":"1","author":"Han"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00881"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/TCAD.2006.884574"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1145\/3242898"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1145\/3020078.3021745"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/FPL.2018.00077"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/MICRO56248.2022.00050"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/FPL53798.2021.00010"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/FCCM.2019.00013"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1145\/3289602.3293898"},{"year":"2023","key":"ref24","article-title":"Intel\u00ae Arria\u00ae 10 FPGA and SoC FPGA"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/FCCM48280.2020.00071"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/TC.2020.2978817"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1145\/3490422.3502360"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1145\/3568992"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/FCCM51124.2021.00053"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1145\/3359983"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1088\/1748-0221\/13\/07\/P07027"},{"article-title":"Accelerating inference with sparsity using the nvidia ampere architecture and nvidia tensorrt","year":"2021","author":"Pool","key":"ref32"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1145\/3388617"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/FCCM.2016.22"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1145\/3020078.3021744"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1145\/2145694.2145708"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/FPL.2013.6645503"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/FPL53798.2021.00068"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1145\/3503465"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1145\/3373087.3375303"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1145\/3289602.3293912"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/FPL.2018.00014"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/FCCM.2019.00015"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/FCCM57271.2023.00015"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/FCCM53951.2022.9786179"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/FCCM51124.2021.00018"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/ICFPT59805.2023.00013"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/TC.2022.3214151"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/FCCM.2010.31"},{"volume-title":"Yosys Open SYnthesis Suite","year":"2012","author":"Wolf","key":"ref50"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1145\/3490422.3502344"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1145\/3301298"},{"article-title":"Pruning vs quantization: Which is better?","year":"2023","author":"Kuzmin","key":"ref53"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.1109\/TVLSI.2004.824300"},{"article-title":"Albert: A lite bert for self-supervised learning of language representations","year":"2019","author":"Lan","key":"ref55"}],"event":{"name":"2024 34th International Conference on Field-Programmable Logic and Applications (FPL)","start":{"date-parts":[[2024,9,2]]},"location":"Torino, Italy","end":{"date-parts":[[2024,9,6]]}},"container-title":["2024 34th International Conference on Field-Programmable Logic and Applications (FPL)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx8\/10705425\/10705440\/10705584.pdf?arnumber=10705584","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,10]],"date-time":"2024-10-10T15:00:48Z","timestamp":1728572448000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10705584\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,9,2]]},"references-count":55,"URL":"https:\/\/doi.org\/10.1109\/fpl64840.2024.00030","relation":{},"subject":[],"published":{"date-parts":[[2024,9,2]]}}}