{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,7]],"date-time":"2024-09-07T12:24:39Z","timestamp":1725711879707},"reference-count":35,"publisher":"IEEE","license":[{"start":{"date-parts":[[2023,11,28]],"date-time":"2023-11-28T00:00:00Z","timestamp":1701129600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,11,28]],"date-time":"2023-11-28T00:00:00Z","timestamp":1701129600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100000923","name":"Australian Research Council","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100000923","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023,11,28]]},"DOI":"10.1109\/dicta60407.2023.00075","type":"proceedings-article","created":{"date-parts":[[2024,1,29]],"date-time":"2024-01-29T18:37:48Z","timestamp":1706553468000},"page":"501-508","source":"Crossref","is-referenced-by-count":0,"title":["Deep Bayesian Image Set Classification Approach for Defense against Adversarial Attacks"],"prefix":"10.1109","author":[{"given":"Nima","family":"Mirnateghi","sequence":"first","affiliation":[{"name":"Edith Cowan University,Center for AI and Machine Learning"}]},{"given":"Syed Afaq Ali","family":"Shah","sequence":"additional","affiliation":[{"name":"Edith Cowan University,Center for AI and Machine Learning"}]},{"given":"Mohammed","family":"Bennamoun","sequence":"additional","affiliation":[{"name":"The University of Western Australia,School of Computer Science and Software Engineering"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2022.09.004"},{"key":"ref2","article-title":"Intriguing properties of neural networks","author":"Szegedy","year":"2013","journal-title":"arXiv preprint arXiv:1312.6199"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2021.3127960"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00175"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1145\/3128572.3140444"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2021.08.093"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2015.10.004"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/IROS55552.2023.10341976"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2018.2886017"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1145\/3052973.3053009"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2022.07.010"},{"key":"ref12","article-title":"Explaining and harnessing adversarial examples","author":"Goodfellow","year":"2014","journal-title":"arXiv preprint arXiv:1412.6572"},{"key":"ref13","article-title":"Towards deep learning models resistant to adversarial attacks","author":"Madry","year":"2017","journal-title":"arXiv preprint arXiv:1706.06083"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.282"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2009.5206848"},{"article-title":"Gat: Generative adversarial training for adversarial example detection and robust classification","volume-title":"International Conference on Learning Representations","author":"Yin","key":"ref16"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1201\/9781351251389-8"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D17-1187"},{"key":"ref19","first-page":"1050","article-title":"Dropout as a bayesian approximation: Representing model uncertainty in deep learning","volume-title":"international conference on machine learning","author":"Gal"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.5555\/3295222.3295309"},{"key":"ref21","article-title":"Adversarial examples, uncertainty, and transfer testing robustness in gaussian process hybrid deep networks","author":"Bradshaw","year":"2017","journal-title":"arXiv preprint arXiv:1707.02476"},{"key":"ref22","article-title":"Robustness to adversarial examples through an ensemble of specialists","author":"Abbasi","year":"2017","journal-title":"arXiv preprint arXiv:1702.06856"},{"article-title":"Detecting adversarial samples from artifacts","volume-title":"arXiv preprint arXiv:1703.00410","author":"Feinman","key":"ref23"},{"key":"ref24","article-title":"Understanding measures of uncertainty for adversarial example detection","author":"Smith","year":"2018","journal-title":"arXiv preprint arXiv:1803.08533"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2018.09.090"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2003.1211497"},{"key":"ref27","article-title":"Adversarial robustness toolbox v1. 0.0","author":"Nicolae","year":"2018","journal-title":"arXiv preprint arXiv:1807.01069"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref29","article-title":"Very deep convolutional networks for large-scale image recognition","author":"Simonyan","year":"2014","journal-title":"arXiv preprint arXiv:1409.1556"},{"volume-title":"Learning multiple layers of features from tiny images","year":"2012","author":"Krizhevsky","key":"ref30"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/5.726791"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-015-0816-y"},{"key":"ref33","first-page":"265","article-title":"Tensorflow: A system for largescale machine learning","volume-title":"12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16)","author":"Abadi"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1145\/3133956.3134057"},{"article-title":"ME-Net: Towards effective adversarial robustness with matrix estimation","volume-title":"Proceedings of the 36th International Conference on Machine Learning (ICML)","author":"Yang","key":"ref35"}],"event":{"name":"2023 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","start":{"date-parts":[[2023,11,28]]},"location":"Port Macquarie, Australia","end":{"date-parts":[[2023,12,1]]}},"container-title":["2023 International Conference on Digital Image Computing: Techniques and Applications (DICTA)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/10410651\/10410903\/10410982.pdf?arnumber=10410982","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T13:00:04Z","timestamp":1706792404000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10410982\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11,28]]},"references-count":35,"URL":"https:\/\/doi.org\/10.1109\/dicta60407.2023.00075","relation":{},"subject":[],"published":{"date-parts":[[2023,11,28]]}}}