{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,9]],"date-time":"2025-04-09T06:13:58Z","timestamp":1744179238055,"version":"3.28.0"},"reference-count":20,"publisher":"IEEE","license":[{"start":{"date-parts":[[2021,12,5]],"date-time":"2021-12-05T00:00:00Z","timestamp":1638662400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2021,12,5]],"date-time":"2021-12-05T00:00:00Z","timestamp":1638662400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,12,5]],"date-time":"2021-12-05T00:00:00Z","timestamp":1638662400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,12,5]]},"DOI":"10.1109\/dac18074.2021.9586154","type":"proceedings-article","created":{"date-parts":[[2021,11,8]],"date-time":"2021-11-08T23:30:34Z","timestamp":1636414234000},"page":"643-648","source":"Crossref","is-referenced-by-count":4,"title":["On The Efficiency of Sparse-Tiled Tensor Graph Processing For Low Memory Usage"],"prefix":"10.1109","author":[{"given":"Antonio","family":"Cipolletta","sequence":"first","affiliation":[]},{"given":"Andrea","family":"Calimera","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/SBAC-PAD49847.2020.00036"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00225"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00821"},{"key":"ref13","doi-asserted-by":"crossref","first-page":"548","DOI":"10.1145\/3140659.3080215","article-title":"Scalpel: Customizing dnn pruning to the underlying hardware parallelism","author":"yu","year":"2017","journal-title":"Proc of the International Symposium on Computer Architecture"},{"key":"ref14","article-title":"cudnn: Efficient primitives for deep learning","author":"chetlur","year":"2014","journal-title":"arXiv preprint arXiv 1410 0759"},{"key":"ref15","article-title":"Cmsis-nn: Efficient neural network kernels for arm cortexm cpus","author":"lai","year":"2018","journal-title":"arXiv preprint arXiv 1801 06601"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/MICRO.2016.7783725"},{"key":"ref17","article-title":"Brainslug: Transparent acceleration of deep learning through depth-first parallelism","author":"weber","year":"2018","journal-title":"arXiv preprint arXiv 1804 08685"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/JETCAS.2019.2905361"},{"key":"ref19","article-title":"Apprentice: Using knowledge distillation techniques to improve low-precision network accuracy","author":"mishra","year":"2017","journal-title":"arXiv preprint arXiv 1711 05847"},{"key":"ref4","article-title":"Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding","author":"han","year":"2016","journal-title":"Proc of the International Conference on Learning Representations"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00286"},{"key":"ref6","article-title":"Mobilenets: Efficient convolutional neural networks for mobile vision applications","volume":"abs 1704 4861","author":"howard","year":"2017","journal-title":"CoRR"},{"key":"ref5","article-title":"Pruning filters for efficient convnets","volume":"abs 1608 8710","author":"li","year":"2016","journal-title":"CoRR"},{"key":"ref8","first-page":"44","article-title":"Ordering chaos: Memory-aware scheduling of irregularly wired neural networks for edge devices","author":"ahn","year":"2020","journal-title":"Proc of Machine Learning and Systems"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00474"},{"journal-title":"Rpi3b+","year":"0","key":"ref2"},{"journal-title":"NUCLEO-F767ZI","year":"0","key":"ref1"},{"key":"ref9","first-page":"3393","article-title":"Learning to optimize tensor programs","author":"chen","year":"2018","journal-title":"Proc of International Conference on Neural Information Processing"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01464"}],"event":{"name":"2021 58th ACM\/IEEE Design Automation Conference (DAC)","start":{"date-parts":[[2021,12,5]]},"location":"San Francisco, CA, USA","end":{"date-parts":[[2021,12,9]]}},"container-title":["2021 58th ACM\/IEEE Design Automation Conference (DAC)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9585997\/9586083\/09586154.pdf?arnumber=9586154","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,10]],"date-time":"2022-05-10T16:55:53Z","timestamp":1652201753000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9586154\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,12,5]]},"references-count":20,"URL":"https:\/\/doi.org\/10.1109\/dac18074.2021.9586154","relation":{},"subject":[],"published":{"date-parts":[[2021,12,5]]}}}