{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T14:47:16Z","timestamp":1730213236346,"version":"3.28.0"},"reference-count":47,"publisher":"IEEE","license":[{"start":{"date-parts":[[2024,6,17]],"date-time":"2024-06-17T00:00:00Z","timestamp":1718582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,6,17]],"date-time":"2024-06-17T00:00:00Z","timestamp":1718582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024,6,17]]},"DOI":"10.1109\/cvprw63382.2024.00766","type":"proceedings-article","created":{"date-parts":[[2024,9,27]],"date-time":"2024-09-27T18:27:42Z","timestamp":1727461662000},"page":"7703-7712","source":"Crossref","is-referenced-by-count":0,"title":["Dataset condensation with latent quantile matching"],"prefix":"10.1109","author":[{"given":"Wei","family":"Wei","sequence":"first","affiliation":[{"name":"University of Antwerp - imec,IDLab,Department of Computer Science,Antwerp,Belgium,2000"}]},{"given":"Tom","family":"De Schepper","sequence":"additional","affiliation":[{"name":"University of Antwerp - imec,IDLab,Department of Computer Science,Antwerp,Belgium,2000"}]},{"given":"Kevin","family":"Mets","sequence":"additional","affiliation":[{"name":"University of Antwerp - imec,IDLab, Faculty of Applied Engineering,Antwerp,Belgium,2000"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1137\/100805741"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1214\/aoms\/1177704477"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN52387.2021.9533862"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1007\/s00362-022-01356-2"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.acha.2022.08.006"},{"article-title":"Flexible dataset distillation: Learn labels instead of images","year":"2020","author":"Bohdal","key":"ref6"},{"article-title":"Deep gaussian embedding of graphs: Unsupervised inductive learning via ranking","year":"2017","author":"Bojchevski","key":"ref7"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1007\/s10878-021-00713-5"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.01045"},{"key":"ref10","first-page":"4294","article-title":"Multi-layer neural networks as trainable ladders of hilbert spaces","volume-title":"International Conference on Machine Learning","author":"Chen"},{"key":"ref11","first-page":"6565","article-title":"Scaling up dataset distillation to imagenet-1k with constant memory","volume-title":"International Conference on Machine Learning","author":"Cui"},{"key":"ref12","first-page":"685","article-title":"Fast computation of wasserstein barycenters","volume-title":"International conference on machine learning","author":"Cuturi"},{"key":"ref13","first-page":"5378","article-title":"Privacy for free: How does dataset condensation help privacy? I","volume-title":"International Conference on Machine Learning","author":"Dong"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52729.2023.00365"},{"article-title":"Federated learning via synthetic data","year":"2020","author":"Goetz","key":"ref15"},{"issue":"1","key":"ref16","first-page":"723","article-title":"A kernel two-sample test","volume":"13","author":"Gretton","year":"2012","journal-title":"The Journal of Machine Learning Research"},{"article-title":"Towards lossless dataset distillation via difficulty-aligned trajectory matching","year":"2023","author":"Guo","key":"ref17"},{"key":"ref18","article-title":"Inductive representation learning on large graphs","volume":"30","author":"Hamilton","year":"2017","journal-title":"Advances in neural information processing systems"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1093\/comjnl\/5.1.10"},{"key":"ref20","first-page":"22118","article-title":"Open graph benchmark: Datasets for machine learning on graphs","volume":"33","author":"Hu","year":"2020","journal-title":"Advances in neural information processing systems"},{"key":"ref21","article-title":"A note on discrete approximations of continuous distributions","author":"Kennan","year":"2006","journal-title":"University of"},{"key":"ref22","first-page":"11102","article-title":"Dataset condensation via efficient synthetic-data parameterization","volume-title":"International Conference on Machine Learning","author":"Kim"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1257\/jep.15.4.143"},{"article-title":"Learning multiple layers of features from tiny images","year":"2009","author":"Krizhevsky","key":"ref24"},{"issue":"7","key":"ref25","first-page":"3","article-title":"Tiny imagenet visual recognition challenge","volume":"7","author":"Le","year":"2015","journal-title":"CS 231N"},{"key":"ref26","first-page":"12352","article-title":"Dataset condensation with contrastive signals","volume-title":"International Conference on Machine Learning","author":"Lee"},{"article-title":"Dataset distillation via the wasserstein metric","year":"2023","author":"Liu","key":"ref27"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM58522.2023.00141"},{"key":"ref29","article-title":"Gradient episodic memory for continual learning","volume":"30","author":"Lopez-Paz","year":"2017","journal-title":"Advances in neural information processing systems"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1080\/01621459.1951.10500769"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58536-5_31"},{"issue":"1","key":"ref32","first-page":"21","article-title":"Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests","volume":"2","author":"Razali","year":"2011","journal-title":"Journal of statistical modeling and analytics"},{"article-title":"Data distillation: A survey","year":"2023","author":"Sachdeva","key":"ref33"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV51070.2023.01568"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.2307\/2288805"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.2307\/2286009"},{"key":"ref37","first-page":"9206","article-title":"Generative teaching networks: Accelerating neural architecture search by learning to generate synthetic training data","volume-title":"International Conference on Machine Learning","author":"Such"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.01188"},{"article-title":"Dataset distillation","year":"2018","author":"Wang","key":"ref39"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.5220\/0012394400003660"},{"article-title":"An efficient dataset condensation plugin and its application to continual learning","volume-title":"Thirty-seventh Conference on Neural Information Processing Systems","author":"Yang","key":"ref41"},{"key":"ref42","first-page":"13006","article-title":"Cglb: Benchmark tasks for continual graph learning","volume":"35","author":"Zhang","year":"2022","journal-title":"Advances in Neural Information Processing Systems"},{"key":"ref43","first-page":"12674","article-title":"Dataset condensation with differentiable siamese augmentation","volume-title":"International Conference on Machine Learning","author":"Zhao"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/WACV56688.2023.00645"},{"article-title":"Dataset condensation with gradient matching","year":"2020","author":"Zhao","key":"ref45"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52729.2023.00759"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/tpami.2024.3429383"}],"event":{"name":"2024 IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","start":{"date-parts":[[2024,6,17]]},"location":"Seattle, WA, USA","end":{"date-parts":[[2024,6,18]]}},"container-title":["2024 IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx8\/10677511\/10677844\/10678249.pdf?arnumber=10678249","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,29]],"date-time":"2024-09-29T04:02:42Z","timestamp":1727582562000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10678249\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,6,17]]},"references-count":47,"URL":"https:\/\/doi.org\/10.1109\/cvprw63382.2024.00766","relation":{},"subject":[],"published":{"date-parts":[[2024,6,17]]}}}