{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,5]],"date-time":"2025-04-05T10:08:05Z","timestamp":1743847685471,"version":"3.28.0"},"reference-count":60,"publisher":"IEEE","license":[{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023,6]]},"DOI":"10.1109\/cvpr52729.2023.01876","type":"proceedings-article","created":{"date-parts":[[2023,8,22]],"date-time":"2023-08-22T13:30:52Z","timestamp":1692711052000},"page":"19585-19595","source":"Crossref","is-referenced-by-count":43,"title":["Conflict-Based Cross-View Consistency for Semi-Supervised Semantic Segmentation"],"prefix":"10.1109","author":[{"given":"Zicheng","family":"Wang","sequence":"first","affiliation":[{"name":"University of Sydney"}]},{"given":"Zhen","family":"Zhao","sequence":"additional","affiliation":[{"name":"University of Sydney"}]},{"given":"Xiaoxia","family":"Xing","sequence":"additional","affiliation":[{"name":"Samsung Research China-Beijing"}]},{"given":"Dong","family":"Xu","sequence":"additional","affiliation":[{"name":"University of Hong Kong"}]},{"given":"Xiangyu","family":"Kong","sequence":"additional","affiliation":[{"name":"Samsung Research China-Beijing"}]},{"given":"Luping","family":"Zhou","sequence":"additional","affiliation":[{"name":"University of Sydney"}]}],"member":"263","reference":[{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.350"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00681"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.00598"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v36i8.20907"},{"key":"ref15","article-title":"An image is worth 16x16 words: Trans-formers for image recognition at scale","author":"dosovitskiy","year":"2020","journal-title":"ar Xiv preprint"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00695"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00718"},{"key":"ref53","article-title":"Instance-specific and model-adaptive supervision for semi-supervised semantic segmentation","author":"zhao","year":"2022","journal-title":"ArXiv Preprint"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.660"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2022.3140608"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.00953"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00264"},{"key":"ref54","article-title":"Augmentation matters: A simple-yet-effective approach to semi-supervised semantic segmentation","author":"zhao","year":"2022","journal-title":"ArXiv Preprint"},{"journal-title":"Semi-supervised semantic segmentation needs strong high-dimensional perturbations","year":"2019","author":"french","key":"ref17"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-009-0275-4"},{"key":"ref19","first-page":"21271","article-title":"Bootstrap your own latent -a new approach to self-supervised learning","volume":"33","author":"grill","year":"2020","journal-title":"Advances in neural information processing systems"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00326"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00400"},{"key":"ref50","article-title":"Segvit: Semantic segmentation with plain vision transformers","author":"zhang","year":"2022","journal-title":"ArXiv Preprint"},{"key":"ref46","article-title":"Revisiting weak-to-strong consistency in semi -supervised semantic segmentation","author":"yang","year":"2022","journal-title":"ar Xiv preprint"},{"key":"ref45","first-page":"12077","article-title":"Segformer: Simple and efficient design for semantic segmentation with transformers","volume":"34","author":"xie","year":"2021","journal-title":"Advances in neural information processing systems"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.00423"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00878"},{"key":"ref42","article-title":"Attention is all you need","volume":"30","author":"vaswani","year":"2017","journal-title":"Advances in neural information processing systems"},{"key":"ref41","first-page":"596","article-title":"Fixmatch: Simplifying semi-supervised learning with consistency and confidence","volume":"33","author":"sohn","year":"2020","journal-title":"Advances in neural information processing systems"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.00421"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2020.2983686"},{"key":"ref49","first-page":"7281","article-title":"Hrformer: High-resolution vision transformer for dense predict","volume":"34","author":"yuan","year":"2021","journal-title":"Advances in neural information processing systems"},{"key":"ref8","first-page":"801","article-title":"Encoder-decoder with atrous separable convolution for semantic image segmentation","author":"chen","year":"0","journal-title":"Proceedings of the European Conference on Computer Vision (ECCV)"},{"key":"ref7","article-title":"Rethinking atrous convolution for semantic image segmentation","author":"chen","year":"2017","journal-title":"ArXiv Preprint"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.01549"},{"key":"ref4","first-page":"213","article-title":"End-to-end object detection with transformers","author":"carion","year":"0","journal-title":"European Conference on Computer Vision"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.01597"},{"key":"ref6","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","article-title":"Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs","volume":"40","author":"chen","year":"2017","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"ref5","article-title":"Semantic image segmentation with deep convolutional nets and fully connected crfs","author":"chen","year":"2014","journal-title":"ArXiv Preprint"},{"key":"ref40","first-page":"135","article-title":"Deep co-training for semi-supervised image recognition","author":"qiao","year":"0","journal-title":"Proceedings of the European Conference on Computer Vision (ECCV)"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.00422"},{"key":"ref34","article-title":"Bootstrapping semantic segmentation with regional contrast","author":"liu","year":"2021","journal-title":"ArXiv Preprint"},{"key":"ref37","first-page":"141","article-title":"Semi-supervised segmentation based on error-correcting supervision","author":"mendel","year":"0","journal-title":"Eu-ropean Conference on Computer vision"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i07.6805"},{"key":"ref30","first-page":"27408","article-title":"Reducing information bottleneck for weakly supervised semantic segmentation","volume":"34","author":"lee","year":"2021","journal-title":"Advances in neural information processing systems"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2022.3193290"},{"key":"ref32","article-title":"Bevformer: Learning bird's-eye-view representation from multi-camera images via spatiotemporal transformers","author":"li","year":"2022","journal-title":"ArXiv Preprint"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00811"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00523"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01269"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/WACV48630.2021.00141"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01273"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref26","first-page":"429","article-title":"Guided collaborative training for pixel-wise semi-supervised learning","author":"ke","year":"0","journal-title":"Computer Vision-ECCV 2020 16th European Conference Glasgow UK August 23–28 2020 Proceedings Part XIII 16"},{"key":"ref25","first-page":"448","article-title":"Batch normalization: Accelerating deep network training by reducing internal co-variate shift","author":"ioffe","year":"0","journal-title":"International Conference on Machine Learning"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.00973"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2011.6126343"},{"key":"ref21","article-title":"Segnext: Rethinking convolutional attention design for semantic segmentation","author":"guo","year":"2022","journal-title":"ArXiv Preprint"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.00972"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.181"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00126"},{"key":"ref60","article-title":"Pseudoseg: Designing pseudo labels for semantic segmentation","author":"zou","year":"2020","journal-title":"ar Xiv preprint"}],"event":{"name":"2023 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","start":{"date-parts":[[2023,6,17]]},"location":"Vancouver, BC, Canada","end":{"date-parts":[[2023,6,24]]}},"container-title":["2023 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/10203037\/10203050\/10203354.pdf?arnumber=10203354","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,11]],"date-time":"2023-09-11T13:57:59Z","timestamp":1694440679000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10203354\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,6]]},"references-count":60,"URL":"https:\/\/doi.org\/10.1109\/cvpr52729.2023.01876","relation":{},"subject":[],"published":{"date-parts":[[2023,6]]}}}