{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,24]],"date-time":"2025-03-24T08:56:51Z","timestamp":1742806611194,"version":"3.37.3"},"reference-count":52,"publisher":"IEEE","license":[{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62171038,61827901,62088101"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022,6]]},"DOI":"10.1109\/cvpr52688.2022.01235","type":"proceedings-article","created":{"date-parts":[[2022,9,27]],"date-time":"2022-09-27T19:56:41Z","timestamp":1664308601000},"page":"12672-12681","source":"Crossref","is-referenced-by-count":22,"title":["Estimating Fine-Grained Noise Model via Contrastive Learning"],"prefix":"10.1109","author":[{"given":"Yunhao","family":"Zou","sequence":"first","affiliation":[{"name":"School of Computer Science and Technology, Beijing Institute of Technology"}]},{"given":"Ying","family":"Fu","sequence":"additional","affiliation":[{"name":"School of Computer Science and Technology, Beijing Institute of Technology"}]}],"member":"263","reference":[{"key":"ref39","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmentation","author":"ronneberger","year":"0","journal-title":"Med Image Comput Comput Assist Interv"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2012.2221728"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/34.44408"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2014.2363735"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2014.2347204"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2013.2283400"},{"key":"ref37","first-page":"1586","article-title":"Benchmarking denoising al-gorithms with real photographs","author":"plotz","year":"0","journal-title":"IEEE Conf Comput Vis Pattern Recog"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2021.3049961"},{"key":"ref35","first-page":"8026","article-title":"Pytorch: An imperative style, high-performance deep learning library","author":"paszke","year":"0","journal-title":"Adv Neural Inform Process Syst"},{"key":"ref34","first-page":"1683","article-title":"A holistic approach to cross-channel im-age noise modeling and its application to image denoising","author":"nam","year":"0","journal-title":"IEEE Conf Comput Vis Pattern Recog"},{"key":"ref28","first-page":"901","article-title":"Noise estimation from a single image","volume":"1","author":"liu","year":"0","journal-title":"IEEE Conf Comput Vis Pattern Recog"},{"key":"ref27","article-title":"Glow: Generative flow with invertible 1×1 convolutions","volume":"31","author":"kingma","year":"0","journal-title":"Adv Neural Inform Process Syst"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2012.2219544"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00182"},{"key":"ref1","first-page":"3165","article-title":"Noise flow: Noise modeling with con-ditional normalizing flows","author":"abdelhamed","year":"0","journal-title":"IEEE Int Conf Comput Vis"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1007\/978-0-387-31439-6_482"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2020.3012120"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/34.276126"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/TCSVT.2007.913972"},{"key":"ref23","doi-asserted-by":"crossref","first-page":"300","DOI":"10.1006\/cviu.1996.0060","article-title":"Fast noise variance estimation","volume":"64","author":"immerkaer","year":"1996","journal-title":"Comput Vis Image Underst"},{"key":"ref26","article-title":"Adam: A method for stochastic optimization","author":"kingma","year":"0","journal-title":"Int Conf Learn Represent"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00235"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00455"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i07.7009"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.52"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00347"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.62"},{"key":"ref40","first-page":"4539","article-title":"Mem-net: A persistent memory network for image restoration","author":"tai","year":"0","journal-title":"IEEE Int Conf Comput Vis"},{"key":"ref12","first-page":"3155","article-title":"Image blind denoising with generative adversarial net-work based noise modeling","author":"chen","year":"0","journal-title":"IEEE Conf Comput Vis Pat-tern Recog"},{"key":"ref13","first-page":"1597","article-title":"A simple framework for contrastive learning of visual representations","author":"chen","year":"0","journal-title":"Int Conf Mach Learn"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2007.901238"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/JSEN.2007.904864"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2008.2001399"},{"key":"ref17","article-title":"Generative adversarial nets","volume":"27","author":"goodfellow","year":"0","journal-title":"Adv Neural Inform Process Syst"},{"key":"ref18","first-page":"1712","article-title":"Toward convolutional blind denoising of real pho-tographs","author":"guo","year":"0","journal-title":"IEEE Conf Comput Vis Pattern Recog"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1007\/BF01456326"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/34.141557"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/TSP.2006.881199"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2005.38"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.01129"},{"key":"ref8","article-title":"Pseudo-isp: Learning pseudo in-camera signal processing pipeline from a color image de-noiser","author":"cao","year":"2021","journal-title":"Arxiv preprint arXiv"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00571"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2018.2839891"},{"key":"ref9","first-page":"343","article-title":"Learning camera-aware noise models","author":"chang","year":"0","journal-title":"Eur Conf Comput Vis"},{"key":"ref46","first-page":"66","article-title":"3d2unet: 3d de-formable unet for low-light video enhancement","author":"zeng","year":"0","journal-title":"Chin Conf Pattern Recog Comput Vis"},{"key":"ref45","first-page":"41","article-title":"Dual adversarial network: Toward real-world noise removal and noise generation","author":"yue","year":"0","journal-title":"Eur Conf Comput Vis"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2017.2662206"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2017.2651365"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2021.3103114"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58539-6_1"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00237"},{"key":"ref43","first-page":"352","article-title":"Unpaired learning of deep image denoising","author":"wu","year":"0","journal-title":"Eur Conf Comput Vis"}],"event":{"name":"2022 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","start":{"date-parts":[[2022,6,18]]},"location":"New Orleans, LA, USA","end":{"date-parts":[[2022,6,24]]}},"container-title":["2022 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9878378\/9878366\/09879985.pdf?arnumber=9879985","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,14]],"date-time":"2022-10-14T20:53:20Z","timestamp":1665780800000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9879985\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6]]},"references-count":52,"URL":"https:\/\/doi.org\/10.1109\/cvpr52688.2022.01235","relation":{},"subject":[],"published":{"date-parts":[[2022,6]]}}}