{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,8]],"date-time":"2025-04-08T21:23:26Z","timestamp":1744147406315,"version":"3.37.3"},"reference-count":38,"publisher":"IEEE","license":[{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["11988101,62171139,U2031117"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022,6]]},"DOI":"10.1109\/cvpr52688.2022.00783","type":"proceedings-article","created":{"date-parts":[[2022,9,27]],"date-time":"2022-09-27T19:56:41Z","timestamp":1664308601000},"page":"7983-7992","source":"Crossref","is-referenced-by-count":25,"title":["Learning Distinctive Margin toward Active Domain Adaptation"],"prefix":"10.1109","author":[{"given":"Ming","family":"Xie","sequence":"first","affiliation":[{"name":"Fudan University"}]},{"given":"Yuxi","family":"Li","sequence":"additional","affiliation":[{"name":"Tencent Youtu Lab"}]},{"given":"Yabiao","family":"Wang","sequence":"additional","affiliation":[{"name":"Tencent Youtu Lab"}]},{"given":"Zekun","family":"Luo","sequence":"additional","affiliation":[{"name":"Tencent Youtu Lab"}]},{"given":"Zhenye","family":"Gan","sequence":"additional","affiliation":[{"name":"Tencent Youtu Lab"}]},{"given":"Zhongyi","family":"Sun","sequence":"additional","affiliation":[{"name":"Tencent Youtu Lab"}]},{"given":"Mingmin","family":"Chi","sequence":"additional","affiliation":[{"name":"Fudan University"}]},{"given":"Chengjie","family":"Wang","sequence":"additional","affiliation":[{"name":"Tencent Youtu Lab"}]},{"given":"Pei","family":"Wang","sequence":"additional","affiliation":[{"name":"NAOC CAS"}]}],"member":"263","reference":[{"doi-asserted-by":"publisher","key":"ref38","DOI":"10.1109\/CVPR42600.2020.00878"},{"key":"ref33","article-title":"Fixmatch: Simpli-fying semi-supervised learning with consistency and confi-dence","author":"sohn","year":"2020","journal-title":"Advances in neural information processing systems"},{"key":"ref32","first-page":"5972","article-title":"Vari-ational adversarial active learning","author":"sinha","year":"0","journal-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision"},{"key":"ref31","first-page":"237","article-title":"Active learning literature survey","volume":"10","author":"settles","year":"1995","journal-title":"Science"},{"key":"ref30","article-title":"Active learning for convo-lutional neural networks: A core-set approach","author":"sener","year":"0","journal-title":"International Conference on Learning Representations"},{"doi-asserted-by":"publisher","key":"ref37","DOI":"10.1109\/CVPR.2019.00018"},{"doi-asserted-by":"publisher","key":"ref36","DOI":"10.1007\/978-3-030-58586-0_40"},{"doi-asserted-by":"publisher","key":"ref35","DOI":"10.1109\/CVPR.2017.572"},{"doi-asserted-by":"publisher","key":"ref34","DOI":"10.1109\/WACV45572.2020.9093390"},{"doi-asserted-by":"publisher","key":"ref10","DOI":"10.1007\/978-3-030-01225-0_28"},{"doi-asserted-by":"publisher","key":"ref11","DOI":"10.1109\/CVPR46437.2021.00719"},{"key":"ref12","first-page":"2096","article-title":"Domain-adversarial training of neural networks","volume":"17","author":"ganin","year":"2016","journal-title":"The Journal of Machine Learning Research"},{"key":"ref13","first-page":"529","article-title":"Semi-supervised learning by entropy minimization","author":"grandvalet","year":"0","journal-title":"ADVANCES IN NEURAL IN-FORMATION PROCESSING SYSTEMS"},{"doi-asserted-by":"publisher","key":"ref14","DOI":"10.1109\/CVPR.2016.90"},{"doi-asserted-by":"publisher","key":"ref15","DOI":"10.1145\/3219819.3220026"},{"doi-asserted-by":"publisher","key":"ref16","DOI":"10.1109\/TPAMI.2012.21"},{"doi-asserted-by":"publisher","key":"ref17","DOI":"10.1109\/CVPR46437.2021.00807"},{"year":"2009","author":"krizhevsky","journal-title":"Learning multiple layers of features from tiny images","key":"ref18"},{"key":"ref19","first-page":"1097","article-title":"Imagenet classification with deep convolutional neural net-works","volume":"25","author":"krizhevsky","year":"2012","journal-title":"Advances in neural information processing systems"},{"key":"ref28","first-page":"213","article-title":"Adapting visual category models to new domains","author":"saenko","year":"2010","journal-title":"European Conference on Computer Vision"},{"doi-asserted-by":"publisher","key":"ref4","DOI":"10.1007\/s10994-009-5152-4"},{"doi-asserted-by":"publisher","key":"ref27","DOI":"10.1109\/ICCV48922.2021.00742"},{"doi-asserted-by":"publisher","key":"ref3","DOI":"10.1007\/978-3-540-72927-3_5"},{"doi-asserted-by":"publisher","key":"ref6","DOI":"10.1109\/CVPR46437.2021.00668"},{"doi-asserted-by":"publisher","key":"ref29","DOI":"10.1109\/ICCV.2019.00814"},{"key":"ref5","article-title":"Mixmatch: A holistic approach to semi-supervised learning","author":"berthelot","year":"2019","journal-title":"Advances in neural information processing systems"},{"doi-asserted-by":"publisher","key":"ref8","DOI":"10.1109\/CVPR42600.2020.00400"},{"doi-asserted-by":"publisher","key":"ref7","DOI":"10.1007\/BF00994018"},{"key":"ref2","article-title":"Deep batch active learning by diverse, uncertain gradient lower bounds","author":"ash","year":"0","journal-title":"International Conference on Learning Representations"},{"doi-asserted-by":"publisher","key":"ref9","DOI":"10.1016\/B978-1-55860-377-6.50027-X"},{"key":"ref1","first-page":"137","article-title":"Contextual diversity for active learning","author":"agarwal","year":"2020","journal-title":"European Conference on Computer Vision"},{"doi-asserted-by":"publisher","key":"ref20","DOI":"10.1016\/B978-1-55860-335-6.50026-X"},{"doi-asserted-by":"publisher","key":"ref22","DOI":"10.1109\/ICCV48922.2021.00846"},{"key":"ref21","first-page":"1104","article-title":"Learning in-variant representations and risks for semi-supervised domain adaptation","author":"li","year":"0","journal-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition"},{"key":"ref24","first-page":"1647","article-title":"Conditional adversarial domain adaptation","author":"long","year":"0","journal-title":"Advances in neural information processing systems"},{"doi-asserted-by":"publisher","key":"ref23","DOI":"10.1109\/CVPR46437.2021.01636"},{"doi-asserted-by":"publisher","key":"ref26","DOI":"10.1109\/ICCV48922.2021.00839"},{"doi-asserted-by":"publisher","key":"ref25","DOI":"10.1145\/1015330.1015349"}],"event":{"name":"2022 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","start":{"date-parts":[[2022,6,18]]},"location":"New Orleans, LA, USA","end":{"date-parts":[[2022,6,24]]}},"container-title":["2022 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9878378\/9878366\/09878570.pdf?arnumber=9878570","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,14]],"date-time":"2022-10-14T20:54:59Z","timestamp":1665780899000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9878570\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6]]},"references-count":38,"URL":"https:\/\/doi.org\/10.1109\/cvpr52688.2022.00783","relation":{},"subject":[],"published":{"date-parts":[[2022,6]]}}}