{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T14:36:48Z","timestamp":1730212608076,"version":"3.28.0"},"reference-count":51,"publisher":"IEEE","license":[{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022,6]]},"DOI":"10.1109\/cvpr52688.2022.00124","type":"proceedings-article","created":{"date-parts":[[2022,9,27]],"date-time":"2022-09-27T19:56:41Z","timestamp":1664308601000},"page":"1162-1171","source":"Crossref","is-referenced-by-count":22,"title":["A Voxel Graph CNN for Object Classification with Event Cameras"],"prefix":"10.1109","author":[{"given":"Yongjian","family":"Deng","sequence":"first","affiliation":[{"name":"College of Computer Science, Beijing University of Technology"}]},{"given":"Hao","family":"Chen","sequence":"additional","affiliation":[{"name":"School of Computer Science and Engineering, Southeast University"}]},{"given":"Hai","family":"Liu","sequence":"additional","affiliation":[{"name":"The National Engineering Research Center for E-Learning, Central China Normal University"}]},{"given":"Youfu","family":"Li","sequence":"additional","affiliation":[{"name":"City University of Hong Kong,Department of Mechanical Engineering"}]}],"member":"263","reference":[{"key":"ref39","first-page":"5099","article-title":"Pointnet++: Deep hierarchical feature learning on point sets in a metric space","author":"qi","year":"0","journal-title":"Conf Neural Inf Process Syst"},{"key":"ref38","first-page":"652","article-title":"Pointnet: Deep learning on point sets for 3d classification and segmentation","author":"qi","year":"0","journal-title":"IEEE Conf Comput Vis Pattern Recog"},{"key":"ref33","article-title":"Fast event-based corner detection","author":"mueggler","year":"0","journal-title":"British Mach Vis Conf"},{"key":"ref32","article-title":"Pruning convolutional neural networks for resource efficient in-ference","author":"molchanov","year":"0","journal-title":"Int Conf Learn Represent"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01442"},{"key":"ref30","first-page":"415","article-title":"Event-based asynchronous sparse convolutional networks","author":"messikommer","year":"0","journal-title":"Eur Conf Comput Vis"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/JSSC.2010.2085952"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2013.71"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2015.2392947"},{"key":"ref34","first-page":"437","article-title":"Converting static image datasets to spiking neuromorphic datasets using saccades","volume":"9","author":"garrick","year":"2015","journal-title":"Front Neurosci"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/JSSC.2007.914337"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.3389\/fnins.2017.00309"},{"key":"ref29","first-page":"5419","article-title":"Event-based vision meets deep learning on steering prediction for self-driving cars","author":"ana","year":"0","journal-title":"IEEE Conf Comput Vis Pattern Recog"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00058"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.781"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7299173"},{"key":"ref22","article-title":"Mobilenets: Efficient convolutional neural networks for mobile vision applications","author":"andrew","year":"2017","journal-title":"ArXiv Preprint"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref24","article-title":"Adam: A method for stochastic optimization","author":"kingma","year":"2014","journal-title":"ArXiv Preprint"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58517-4_6"},{"key":"ref26","first-page":"1346","article-title":"Hots: a hierarchy of event-based time-surfaces for pattern recognition","volume":"39","author":"xavier","year":"2016","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"ref25","first-page":"1","article-title":"Semi-supervised clas-sification with graph convolutional networks","author":"kipf","year":"0","journal-title":"Int Conf Learn Represent"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.15607\/RSS.2018.XIV.062"},{"key":"ref51","first-page":"0","article-title":"Unsupervised event-based optical flow using motion compensation","author":"zhu","year":"0","journal-title":"Eur Conf Comput Vis"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2021.3077136"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/TCSVT.2021.3073673"},{"key":"ref40","first-page":"1","article-title":"High speed and high dynamic range video with an event camera","author":"rebecq","year":"2019","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/LRA.2020.3002480"},{"key":"ref13","first-page":"1","article-title":"Fast-classifying, high-accuracy spiking deep networks through weight and thresh-old balancing","author":"diehl","year":"0","journal-title":"2015 Int Joint Conf Neural Netw"},{"key":"ref14","article-title":"An image is worth 16×16 words: Trans-formers for image recognition at scale","author":"dosovitskiy","year":"0","journal-title":"Int Conf Learn Represent"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2006.79"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/TMM.2021.3118891"},{"key":"ref17","first-page":"1","article-title":"Event-based vision: A survey","author":"gallego","year":"2020","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00364"},{"key":"ref19","first-page":"5633","article-title":"End-to-end learning of representations for asynchronous event-based data","author":"daniel","year":"0","journal-title":"IEEE Int Conf on Comp Vis"},{"key":"ref4","doi-asserted-by":"crossref","first-page":"137","DOI":"10.3389\/fnins.2015.00137","article-title":"On event-based optical flow detection","volume":"9","author":"brosch","year":"2015","journal-title":"Front Neurosci"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2020.3023597"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2015.02.013"},{"key":"ref5","article-title":"A differentiable recurrent surface for asynchronous event-based data","author":"cannici","year":"0","journal-title":"Eur Conf Comput Vis"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/TMM.2018.2859591"},{"key":"ref7","doi-asserted-by":"crossref","first-page":"594","DOI":"10.3389\/fnins.2016.00594","article-title":"A motion-based feature for event-based pattern recognition","volume":"10","author":"clady","year":"2017","journal-title":"Front Neurosci"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/ICCP51581.2021.9466265"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00067"},{"key":"ref45","first-page":"1139","article-title":"On the importance of initialization and momentum in deep learning","author":"sutskever","year":"0","journal-title":"Int Conf Mach Learn"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/TMM.2020.2993957"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/WACV.2019.00199"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.5244\/C.30.94"},{"key":"ref41","first-page":"1","article-title":"High speed and high dynamic range video with an event camera","author":"rebecq","year":"2019","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00186"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00401"}],"event":{"name":"2022 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","start":{"date-parts":[[2022,6,18]]},"location":"New Orleans, LA, USA","end":{"date-parts":[[2022,6,24]]}},"container-title":["2022 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9878378\/9878366\/09879077.pdf?arnumber=9879077","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,14]],"date-time":"2022-10-14T20:57:06Z","timestamp":1665781026000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9879077\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6]]},"references-count":51,"URL":"https:\/\/doi.org\/10.1109\/cvpr52688.2022.00124","relation":{},"subject":[],"published":{"date-parts":[[2022,6]]}}}