{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,5]],"date-time":"2025-04-05T07:06:29Z","timestamp":1743836789587,"version":"3.37.3"},"reference-count":74,"publisher":"IEEE","license":[{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,6]]},"DOI":"10.1109\/cvpr46437.2021.01637","type":"proceedings-article","created":{"date-parts":[[2021,11,2]],"date-time":"2021-11-02T21:56:02Z","timestamp":1635890162000},"page":"16638-16648","source":"Crossref","is-referenced-by-count":84,"title":["MetaAlign: Coordinating Domain Alignment and Classification for Unsupervised Domain Adaptation"],"prefix":"10.1109","author":[{"given":"Guoqiang","family":"Wei","sequence":"first","affiliation":[]},{"given":"Cuiling","family":"Lan","sequence":"additional","affiliation":[]},{"given":"Wenjun","family":"Zeng","sequence":"additional","affiliation":[]},{"given":"Zhibo","family":"Chen","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref73","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00078"},{"key":"ref72","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.319"},{"key":"ref71","first-page":"5031","article-title":"Domainsymmetric networks for adversarial domain adaptation","author":"zhang","year":"2019","journal-title":"CVPR"},{"key":"ref70","first-page":"7404","article-title":"Bridging theory and algorithm for domain adaptation","author":"zhang","year":"2019","journal-title":"ICML"},{"key":"ref74","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i07.7015"},{"key":"ref39","first-page":"2208","article-title":"Deep transfer learning with joint adaptation networks","author":"long","year":"2017","journal-title":"ICML"},{"key":"ref38","first-page":"136","article-title":"Unsupervised domain adaptation with residual transfer networks","author":"long","year":"2016","journal-title":"NeurIPS"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00566"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00153"},{"key":"ref31","article-title":"Learning to generalize: Meta-learning for domain generalization","author":"li","year":"2018","journal-title":"AAAI"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.591"},{"key":"ref37","first-page":"1645","article-title":"Conditional adversarial domain adaptation","author":"long","year":"2018","journal-title":"NeurIPS"},{"key":"ref36","first-page":"97","article-title":"Learning transferable features with deep adaptation networks","author":"long","year":"2015","journal-title":"ICML"},{"key":"ref35","first-page":"4013","article-title":"Transferable adversarial training: A general approach to adapting deep classifiers","author":"liu","year":"2019","journal-title":"ICML"},{"key":"ref34","article-title":"Learning to optimize neural nets","author":"li","year":"2017","journal-title":"arXiv preprint arXiv 1703 00441"},{"key":"ref60","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2011.5995347"},{"key":"ref62","article-title":"Deep domain confusion: Maximizing for domain invariance","author":"tzeng","year":"2014","journal-title":"Arxiv preprint arXiv 1412 3474"},{"key":"ref61","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.316"},{"key":"ref63","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.572"},{"key":"ref28","first-page":"1097","article-title":"Imagenet classification with deep convolutional neural networks","author":"krizhevsky","year":"2012","journal-title":"NeurIPS"},{"key":"ref64","first-page":"3630","article-title":"Matching networks for one shot learning","author":"vinyals","year":"2016","journal-title":"NeurIPS"},{"key":"ref27","article-title":"Siamese neural networks for one-shot image recognition","author":"koch","year":"2015","journal-title":"ICML Deep Learning Workshop"},{"key":"ref65","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00576"},{"key":"ref66","first-page":"5334","article-title":"Generalizing to unseen domains via adversarial data augmentation","author":"volpi","year":"2018","journal-title":"NeurIPS"},{"key":"ref29","first-page":"382","article-title":"Online meta-learning for multi-source and semi-supervised domain adaptation","author":"li","year":"2020","journal-title":"ECCV"},{"key":"ref67","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v33i01.33015345"},{"key":"ref68","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.107"},{"key":"ref69","article-title":"Central moment discrepancy (cmd) for domain-invariant representation learning","author":"zellinger","year":"2017","journal-title":"ICLRE"},{"key":"ref2","first-page":"998","article-title":"Metareg: Towards domain generalization using metaregularization","author":"balaji","year":"2018","journal-title":"NeurIPS"},{"key":"ref1","first-page":"3981","article-title":"Learning to learn by gradient descent by gradient descent","author":"andrychowicz","year":"2016","journal-title":"NeurIPS"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.322"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00677"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref24","first-page":"733","article-title":"Every pixel matters: Center-aware feature alignment for domain adaptive object detector","author":"hsu","year":"0","journal-title":"ECCV"},{"key":"ref23","article-title":"Domain adaptive object detection via asymmetric tri-way faster-rcnn","author":"he","year":"2020","journal-title":"ECCV"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00619"},{"key":"ref25","first-page":"5001","article-title":"Cross-domain weakly-supervised object detection through progressive domain adaptation","author":"inoue","year":"2018","journal-title":"CVPR"},{"key":"ref50","first-page":"6956","article-title":"Strong-weak distribution alignment for adaptive object detection","author":"saito","year":"2019","journal-title":"CVPR"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00392"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00972"},{"journal-title":"Learning to Learn","year":"2012","author":"thrun","key":"ref58"},{"key":"ref57","first-page":"443","article-title":"Deep coral: Correlation alignment for deep domain adaptation","author":"sun","year":"2016","journal-title":"ECCV"},{"key":"ref56","doi-asserted-by":"crossref","DOI":"10.1609\/aaai.v30i1.10306","article-title":"Return of frustratingly easy domain adaptation","author":"sun","year":"2016","journal-title":"AAAI"},{"key":"ref55","article-title":"Generalizing across domains via cross-gradient training","author":"shankar","year":"2018","journal-title":"ICLRE"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.74"},{"journal-title":"On learning how to learn learning strategies","year":"1995","author":"schmidhuber","key":"ref53"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00887"},{"key":"ref10","first-page":"6450","article-title":"Domain generalization via model-agnostic learning of semantic features","author":"dou","year":"2019","journal-title":"NeurIPS"},{"journal-title":"The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results","year":"0","author":"everingham","key":"ref11"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00913"},{"journal-title":"The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results","year":"0","author":"everingham","key":"ref12"},{"key":"ref13","first-page":"1126","article-title":"Model-agnostic meta-learning for fast adaptation of deep networks","author":"finn","year":"2017","journal-title":"ICML"},{"key":"ref14","first-page":"1180","article-title":"Unsupervised domain adaptation by backpropagation","author":"ganin","year":"2015","journal-title":"ICML"},{"key":"ref15","first-page":"2096","article-title":"Domain-adversarial training of neural networks","volume":"17","author":"ganin","year":"2016","journal-title":"Journal of Machine Learning Research"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2011.2134107"},{"key":"ref17","first-page":"2551","article-title":"Domain generalization for object recognition with multi-task autoencoders","author":"ghifary","year":"2015","journal-title":"ICCV"},{"key":"ref18","first-page":"2672","article-title":"Generative adversarial nets","author":"goodfellow","year":"2014","journal-title":"NeurIPS"},{"key":"ref19","first-page":"513","article-title":"A kernel method for the two-sample-problem","author":"gretton","year":"2007","journal-title":"NeurIPS"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00233"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/btl242"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00832"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i04.5757"},{"key":"ref8","first-page":"3941","article-title":"Towards discriminability and diversity: Batch nuclear-norm maximization under label insufficient situations","author":"cui","year":"2020","journal-title":"CVPR"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00352"},{"key":"ref49","first-page":"213","article-title":"Adapting visual category models to new domains","author":"saenko","year":"2010","journal-title":"ECCV"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01247"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01257"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/WACV.2018.00219"},{"key":"ref48","first-page":"91","article-title":"Faster r-cnn: Towards real-time object detection with region proposal networks","author":"ren","year":"2015","journal-title":"NeurIPS"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01257"},{"key":"ref42","first-page":"10","article-title":"Domain generalization via invariant feature representation","author":"muandet","year":"2013","journal-title":"ICML"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i07.6846"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00149"},{"key":"ref43","doi-asserted-by":"crossref","DOI":"10.1609\/aaai.v32i1.11767","article-title":"Multi-adversarial domain adaptation","author":"pei","year":"2018","journal-title":"AAAI"}],"event":{"name":"2021 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","start":{"date-parts":[[2021,6,20]]},"location":"Nashville, TN, USA","end":{"date-parts":[[2021,6,25]]}},"container-title":["2021 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9577055\/9577056\/09578158.pdf?arnumber=9578158","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,12]],"date-time":"2023-11-12T05:04:40Z","timestamp":1699765480000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9578158\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6]]},"references-count":74,"URL":"https:\/\/doi.org\/10.1109\/cvpr46437.2021.01637","relation":{},"subject":[],"published":{"date-parts":[[2021,6]]}}}