{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T01:12:05Z","timestamp":1740100325768,"version":"3.37.3"},"reference-count":52,"publisher":"IEEE","license":[{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,6]]},"DOI":"10.1109\/cvpr46437.2021.01263","type":"proceedings-article","created":{"date-parts":[[2021,11,2]],"date-time":"2021-11-02T21:56:02Z","timestamp":1635890162000},"page":"12819-12828","source":"Crossref","is-referenced-by-count":46,"title":["EventZoom: Learning to Denoise and Super Resolve Neuromorphic Events"],"prefix":"10.1109","author":[{"given":"Peiqi","family":"Duan","sequence":"first","affiliation":[]},{"given":"Zihao W.","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Xinyu","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Yi","family":"Ma","sequence":"additional","affiliation":[]},{"given":"Boxin","family":"Shi","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00401"},{"key":"ref38","first-page":"156","article-title":"Fast image reconstruction with an event camera","author":"scheerlinck","year":"2020","journal-title":"IEEE\/CVF Win Conf Appl Comput Vis"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00244"},{"key":"ref32","article-title":"Unsuper- vised learning of a hierarchical spiking neural network for optical flow estimation: From events to global motion perception","author":"paredes-vall\u00e9s","year":"2019","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00698"},{"key":"ref30","first-page":"3882","article-title":"Phased LSTM: Accelerating recurrent network training for long or event-based sequences","volume":"29","author":"neil","year":"2016","journal-title":"Adv Neural Inform Process Syst"},{"key":"ref37","article-title":"High speed and high dynamic range video with an event camera","author":"rebecq","year":"2019","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00398"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/JSSC.2010.2085952"},{"key":"ref34","article-title":"Globally-optimal event camera motion estimation","author":"peng","year":"2020","journal-title":"Eur Conf Comput Vis"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58598-3_25"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/ISCAS.2015.7168735"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00284"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.102"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00177"},{"key":"ref20","article-title":"Real-time 3D reconstruction and 6-DoF tracking with an event camera","author":"kim","year":"2016","journal-title":"Eur Conf Comput Vis"},{"key":"ref22","article-title":"Noise2noise: Learning image restoration without clean data","author":"lehtinen","year":"2018","journal-title":"Proc of the International Conference on Machine Learning (ICML)"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58526-6_22"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/JSSC.2007.914337"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00399"},{"key":"ref26","article-title":"Image inpainting for irregular holes using partial convolutions","author":"liu","year":"2018","journal-title":"Eur Conf Comput Vis"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00638"},{"key":"ref50","article-title":"Learning to see in the dark with events","author":"zhang","year":"2020","journal-title":"Eur Conf Comput Vis"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1109\/LRA.2018.2800793"},{"key":"ref52","article-title":"3d u-net: Learning dense volumetric segmentation from sparse annotation","author":"\u00e7i\u00e7ek","year":"2016","journal-title":"Medic Image Computi and Compute Assi Inter Soc (MICCAI)"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2020.3008413"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00407"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00734"},{"journal-title":"Video to events Bringing modern computer vision closer to event cameras","year":"2020","author":"gehrig","key":"ref12"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00573"},{"key":"ref14","first-page":"1134","article-title":"Need for speed: A benchmark for higher frame rate object tracking","author":"kiani","year":"2017","journal-title":"Int Conf Comput Vis"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00180"},{"key":"ref16","first-page":"969","article-title":"Esim: an open event camera simulator","author":"henri","year":"2018","journal-title":"Conference on Robot Learning (CoRL)"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.3389\/fnins.2016.00405"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00338"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/TETC.2017.2788865"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.3390\/s18124122"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/IROS.2018.8593380"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2019.00214"},{"key":"ref5","article-title":"A differentiable recurrent surface for asynchronous event-based data","author":"cannici","year":"2020","journal-title":"Eur Conf Comput Vis"},{"article-title":"V2E: From video frames to realistic DVS event camera streams","year":"2020","author":"delbruck","key":"ref8"},{"key":"ref7","first-page":"2765","article-title":"Learning to super resolve intensity images from events","author":"choi","year":"2020","journal-title":"IEEE Conf Comput Vis Pattern Recog"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/ICCVW.2019.00532"},{"key":"ref9","article-title":"Accelerating the super-resolution convolutional neural network","author":"dong","year":"2016","journal-title":"Eur Conf Comput Vis"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00834"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.01032"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00168"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00652"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/TCSII.2018.2824899"},{"key":"ref41","article-title":"Reducing the sim-to-real gap for event cameras","author":"stoffregen","year":"2020","journal-title":"Eur Conf Comput Vis"},{"key":"ref44","article-title":"Event enhanced high-quality image recovery","author":"wang","year":"2020","journal-title":"Eur Conf Comput Vis"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00161"}],"event":{"name":"2021 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","start":{"date-parts":[[2021,6,20]]},"location":"Nashville, TN, USA","end":{"date-parts":[[2021,6,25]]}},"container-title":["2021 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9577055\/9577056\/09578367.pdf?arnumber=9578367","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,10]],"date-time":"2022-05-10T15:48:05Z","timestamp":1652197685000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9578367\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6]]},"references-count":52,"URL":"https:\/\/doi.org\/10.1109\/cvpr46437.2021.01263","relation":{},"subject":[],"published":{"date-parts":[[2021,6]]}}}