{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,13]],"date-time":"2025-04-13T00:12:39Z","timestamp":1744503159096,"version":"3.28.0"},"reference-count":32,"publisher":"IEEE","license":[{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,6]]},"DOI":"10.1109\/cvpr46437.2021.00842","type":"proceedings-article","created":{"date-parts":[[2021,11,2]],"date-time":"2021-11-02T21:56:02Z","timestamp":1635890162000},"page":"8520-8529","source":"Crossref","is-referenced-by-count":154,"title":["Variational Relational Point Completion Network"],"prefix":"10.1109","author":[{"given":"Liang","family":"Pan","sequence":"first","affiliation":[]},{"given":"Xinyi","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Zhongang","family":"Cai","sequence":"additional","affiliation":[]},{"given":"Junzhe","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Haiyu","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Shuai","family":"Yi","sequence":"additional","affiliation":[]},{"given":"Ziwei","family":"Liu","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00153"},{"key":"ref31","first-page":"10076","article-title":"Exploring self-attention for image recognition","author":"zhao","year":"2020","journal-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition"},{"key":"ref30","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-030-58595-2_31","article-title":"Detail preserved point cloud completion via separated feature aggregation","author":"zhang","year":"2020"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1145\/3072959.3073599"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1145\/3065386"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00060"},{"article-title":"Pointcnn","year":"2018","author":"li","key":"ref13"},{"key":"ref14","doi-asserted-by":"crossref","first-page":"11596","DOI":"10.1609\/aaai.v34i07.6827","article-title":"Morphing and sampling network for dense point cloud completion","volume":"34","author":"liu","year":"2020","journal-title":"Proceedings of the AAAI Conference on Artificial Intelligence"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/LRA.2020.2994483"},{"article-title":"Pointatrousgraph: Deep hierarchical encoder-decoder with atrous convolution for point clouds","year":"2019","author":"pan","key":"ref16"},{"key":"ref17","first-page":"68","article-title":"Stand-alone self-attention in vision models","author":"parmar","year":"2019","journal-title":"Advances in neural information processing systems"},{"key":"ref18","first-page":"5099","article-title":"Pointnet++: Deep hierarchical feature learning on point sets in a metric space","author":"qi","year":"2017","journal-title":"Advances in neural information processing systems"},{"article-title":"Very deep convo-lutional networks for large-scale image recognition","year":"2014","author":"simonyan","key":"ref19"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00029"},{"article-title":"Flex-convolution (deep learning beyond grid-worlds)","year":"2018","author":"groh","key":"ref4"},{"key":"ref27","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-030-58545-7_21","article-title":"Grnet: Gridding residual network for dense point cloud completion","author":"xie","year":"2020"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2012.6248074"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/3DV.2018.00088"},{"key":"ref5","first-page":"216","article-title":"A papier-mâché approach to learning 3d surface generation","author":"groueix","year":"2018","journal-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition"},{"key":"ref8","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2487228.2487237","article-title":"Screened poisson surface reconstruction","volume":"32","author":"kazhdan","year":"2013","journal-title":"ACM Transactions on Graphics (TOG)"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00356"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.261"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1145\/1278780.1278807"},{"article-title":"Adam: A method for stochastic optimization","year":"2014","author":"kingma","key":"ref9"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00352"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00651"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00047"},{"key":"ref24","first-page":"1","article-title":"Dynamic graph cnn for learning on point clouds","volume":"38","author":"wang","year":"2019","journal-title":"ACM Transactions on Graphics (TOG)"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00087"},{"key":"ref26","first-page":"1912","article-title":"3d shapenets: A deep representation for volumetric shapes","author":"wu","year":"2015","journal-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00985"}],"event":{"name":"2021 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","start":{"date-parts":[[2021,6,20]]},"location":"Nashville, TN, USA","end":{"date-parts":[[2021,6,25]]}},"container-title":["2021 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9577055\/9577056\/09577912.pdf?arnumber=9577912","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,14]],"date-time":"2023-01-14T10:22:06Z","timestamp":1673691726000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9577912\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6]]},"references-count":32,"URL":"https:\/\/doi.org\/10.1109\/cvpr46437.2021.00842","relation":{},"subject":[],"published":{"date-parts":[[2021,6]]}}}