{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T14:27:44Z","timestamp":1730212064562,"version":"3.28.0"},"reference-count":67,"publisher":"IEEE","license":[{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,6]]},"DOI":"10.1109\/cvpr46437.2021.00479","type":"proceedings-article","created":{"date-parts":[[2021,11,2]],"date-time":"2021-11-02T21:56:02Z","timestamp":1635890162000},"page":"4821-4831","source":"Crossref","is-referenced-by-count":83,"title":["Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting"],"prefix":"10.1109","author":[{"given":"Lingbo","family":"Liu","sequence":"first","affiliation":[]},{"given":"Jiaqi","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Hefeng","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Guanbin","family":"Li","sequence":"additional","affiliation":[]},{"given":"Chenglong","family":"Li","sequence":"additional","affiliation":[]},{"given":"Liang","family":"Lin","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"doi-asserted-by":"publisher","key":"ref39","DOI":"10.1109\/ICME.2019.00259"},{"doi-asserted-by":"publisher","key":"ref38","DOI":"10.1109\/CVPR42600.2020.00908"},{"doi-asserted-by":"publisher","key":"ref33","DOI":"10.1109\/CVPR42600.2020.01339"},{"key":"ref32","article-title":"Semi-supervised crowd counting via self-training on surrogate tasks","author":"liu","year":"2020","journal-title":"ECCV"},{"key":"ref31","first-page":"723","article-title":"Estimating people flows to better count them in crowded scenes","author":"liu","year":"2020","journal-title":"ECCV"},{"key":"ref30","first-page":"5099","article-title":"Contextaware crowd counting","author":"liu","year":"2019","journal-title":"CVPR"},{"doi-asserted-by":"publisher","key":"ref37","DOI":"10.1109\/ICCV.2019.00735"},{"key":"ref36","first-page":"8026","article-title":"Pytorch: An imperative style, high-performance deep learning library","author":"paszke","year":"2019","journal-title":"NIPS"},{"key":"ref35","article-title":"Hierarchical dynamic filtering network for rgb-d salient object detection","author":"pang","year":"2020","journal-title":"ECCV"},{"doi-asserted-by":"publisher","key":"ref34","DOI":"10.1109\/ICCV.2019.00624"},{"doi-asserted-by":"publisher","key":"ref60","DOI":"10.1109\/CVPR.2019.00849"},{"doi-asserted-by":"publisher","key":"ref62","DOI":"10.1109\/CVPR.2017.454"},{"doi-asserted-by":"publisher","key":"ref61","DOI":"10.1109\/CVPR.2019.01130"},{"year":"2019","author":"zhang","article-title":"Attend to the difference: Cross-modality person re-identification via contrastive correlation","key":"ref63"},{"doi-asserted-by":"publisher","key":"ref28","DOI":"10.1109\/TITS.2020.3002718"},{"doi-asserted-by":"publisher","key":"ref64","DOI":"10.1109\/CVPR.2016.70"},{"key":"ref27","article-title":"Crowd counting using deep recurrent spatialaware network","author":"liu","year":"2018","journal-title":"IJCAI"},{"doi-asserted-by":"publisher","key":"ref65","DOI":"10.1109\/ICCV.2019.00710"},{"doi-asserted-by":"publisher","key":"ref66","DOI":"10.1109\/CVPR.2019.00405"},{"doi-asserted-by":"publisher","key":"ref29","DOI":"10.1109\/CVPR.2019.00334"},{"doi-asserted-by":"publisher","key":"ref67","DOI":"10.1109\/ACCESS.2020.2998678"},{"doi-asserted-by":"publisher","key":"ref2","DOI":"10.1007\/978-3-030-01228-1_45"},{"doi-asserted-by":"publisher","key":"ref1","DOI":"10.1109\/CVPR42600.2020.00465"},{"year":"2014","author":"kingma","article-title":"Adam: A method for stochastic optimization","key":"ref20"},{"doi-asserted-by":"publisher","key":"ref22","DOI":"10.1109\/CVPR.2019.00192"},{"doi-asserted-by":"publisher","key":"ref21","DOI":"10.1109\/CVPR.2018.00120"},{"key":"ref24","article-title":"Efficient crowd counting via structured knowledge transfer","author":"liu","year":"2020","journal-title":"ACM MM"},{"doi-asserted-by":"publisher","key":"ref23","DOI":"10.1109\/CVPR.2018.00545"},{"doi-asserted-by":"publisher","key":"ref26","DOI":"10.1109\/ICCV.2019.00186"},{"key":"ref25","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-030-58607-2_10","article-title":"Weighing counts: Sequential crowd counting by reinforcement learning","author":"liu","year":"2020"},{"key":"ref50","article-title":"Nwpucrowd: A large-scale benchmark for crowd counting and localization","author":"wang","year":"2020","journal-title":"TPAMI"},{"year":"2020","author":"wu","article-title":"Deepdualmapper:A gated fusion network for automatic map extraction using aerial images and trajectories","key":"ref51"},{"key":"ref59","first-page":"443","article-title":"Is faster r-cnn doing well for pedestrian detection?","author":"zhang","year":"2016","journal-title":"ECCV"},{"doi-asserted-by":"publisher","key":"ref58","DOI":"10.1109\/CVPR42600.2020.00861"},{"doi-asserted-by":"publisher","key":"ref57","DOI":"10.1109\/CVPR.2015.7298684"},{"doi-asserted-by":"publisher","key":"ref56","DOI":"10.1109\/ICCV.2019.00581"},{"doi-asserted-by":"publisher","key":"ref55","DOI":"10.1109\/ICCV.2019.00689"},{"year":"2020","author":"zhai","article-title":"Bifurcated backbone strategy for rgb-d salient object detection","key":"ref54"},{"doi-asserted-by":"publisher","key":"ref53","DOI":"10.1016\/j.neucom.2020.05.042"},{"doi-asserted-by":"publisher","key":"ref52","DOI":"10.1109\/ICCV.2017.551"},{"year":"2020","author":"gao","article-title":"Cnn-based density estimation and crowd counting: A survey","key":"ref10"},{"year":"2020","author":"ghodgaonkar","article-title":"Analyzing worldwide social distancing through largescale computer vision","key":"ref11"},{"doi-asserted-by":"publisher","key":"ref40","DOI":"10.1109\/CVPR.2018.00561"},{"doi-asserted-by":"publisher","key":"ref12","DOI":"10.1007\/978-3-319-19390-8_48"},{"doi-asserted-by":"publisher","key":"ref13","DOI":"10.1109\/CVPR.2013.329"},{"key":"ref14","article-title":"Composition loss for counting, density map estimation and localization in dense crowds","author":"idrees","year":"2018","journal-title":"ECCV"},{"doi-asserted-by":"publisher","key":"ref15","DOI":"10.1109\/TMM.2020.2997184"},{"doi-asserted-by":"publisher","key":"ref16","DOI":"10.1109\/CVPR.2019.00629"},{"key":"ref17","first-page":"3870","article-title":"Incorporating side information by adaptive convolution","author":"kang","year":"2017","journal-title":"NeurIPS"},{"key":"ref18","first-page":"1408","article-title":"Beyond counting: comparisons of density maps for crowd analysis tasks—counting, detection, and tracking","volume":"29","author":"kang","year":"2018","journal-title":"CSVT"},{"doi-asserted-by":"publisher","key":"ref19","DOI":"10.3115\/v1\/D14-1005"},{"doi-asserted-by":"publisher","key":"ref4","DOI":"10.1109\/ICCV.2009.5459191"},{"doi-asserted-by":"publisher","key":"ref3","DOI":"10.1109\/CVPR.2008.4587569"},{"doi-asserted-by":"publisher","key":"ref6","DOI":"10.1109\/CVPR.2016.396"},{"doi-asserted-by":"publisher","key":"ref5","DOI":"10.5244\/C.26.21"},{"key":"ref8","first-page":"3052","article-title":"Jldcf: Joint learning and densely-cooperative fusion framework for rgb-d salient object detection","author":"fu","year":"2020","journal-title":"CVPR"},{"doi-asserted-by":"publisher","key":"ref7","DOI":"10.1007\/978-3-030-58610-2_17"},{"doi-asserted-by":"publisher","key":"ref49","DOI":"10.1145\/2733373.2806337"},{"doi-asserted-by":"publisher","key":"ref9","DOI":"10.1016\/j.engappai.2015.04.006"},{"doi-asserted-by":"publisher","key":"ref46","DOI":"10.1109\/CVPR.2019.00769"},{"key":"ref45","doi-asserted-by":"crossref","DOI":"10.1109\/TPAMI.2020.3035969","article-title":"Jhu-crowd++: Large-scale crowd counting dataset and a benchmark method","author":"sindagi","year":"2020","journal-title":"TPAMI"},{"doi-asserted-by":"publisher","key":"ref48","DOI":"10.1007\/978-3-319-46475-6_41"},{"doi-asserted-by":"publisher","key":"ref47","DOI":"10.1111\/tmi.13383"},{"year":"2014","author":"simonyan","article-title":"Very deep convolutional networks for large-scale image recognition","key":"ref42"},{"doi-asserted-by":"publisher","key":"ref41","DOI":"10.1109\/CVPR.2017.429"},{"doi-asserted-by":"publisher","key":"ref44","DOI":"10.1109\/ICCV.2019.00109"},{"key":"ref43","first-page":"1879","article-title":"Generating high-quality crowd density maps using contextual pyramid cnns","author":"sindagi","year":"2017","journal-title":"ICCV"}],"event":{"name":"2021 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","start":{"date-parts":[[2021,6,20]]},"location":"Nashville, TN, USA","end":{"date-parts":[[2021,6,25]]}},"container-title":["2021 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9577055\/9577056\/09578312.pdf?arnumber=9578312","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,10]],"date-time":"2022-05-10T15:47:58Z","timestamp":1652197678000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9578312\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6]]},"references-count":67,"URL":"https:\/\/doi.org\/10.1109\/cvpr46437.2021.00479","relation":{},"subject":[],"published":{"date-parts":[[2021,6]]}}}