{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:28:32Z","timestamp":1732040912746,"version":"3.28.0"},"reference-count":61,"publisher":"IEEE","license":[{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/100006190","name":"Research and Development","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100006190","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100010428","name":"Innovation and Technology Fund","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100010428","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,6]]},"DOI":"10.1109\/cvpr46437.2021.00107","type":"proceedings-article","created":{"date-parts":[[2021,11,2]],"date-time":"2021-11-02T21:56:02Z","timestamp":1635890162000},"page":"1013-1023","source":"Crossref","is-referenced-by-count":248,"title":["FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space"],"prefix":"10.1109","author":[{"given":"Quande","family":"Liu","sequence":"first","affiliation":[]},{"given":"Cheng","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Jing","family":"Qin","sequence":"additional","affiliation":[]},{"given":"Qi","family":"Dou","sequence":"additional","affiliation":[]},{"given":"Pheng-Ann","family":"Heng","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-662-00551-4_4"},{"key":"ref38","first-page":"10","article-title":"Domain generalization via invariant feature representation","author":"muandet","year":"2013","journal-title":"International Conference on Machine Learning"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2020.2974574"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-59713-9_46"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2013.12.002"},{"key":"ref30","first-page":"3915","author":"li","year":"2019","journal-title":"Proceedings of the 36th International Conference on Machine Learning ICML 2019"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.609"},{"key":"ref36","first-page":"1273","article-title":"Communicationefficient learning of deep networks from decentralized data","author":"mcmahan","year":"2017","journal-title":"Artificial Intelligence and Statistics"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i07.6846"},{"key":"ref34","first-page":"2579","article-title":"Visualizing data using t-sne","volume":"9","author":"van der maaten","year":"2008","journal-title":"Journal of Machine Learning Research"},{"key":"ref60","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2020.2973595"},{"key":"ref61","first-page":"561","article-title":"Learning to generate novel domains for domain generalization","author":"zhou","year":"2020","journal-title":"European Conference on Computer Vision"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2020.101765"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-32692-0_16"},{"key":"ref29","first-page":"624","article-title":"Deep domain generalization via conditional invariant adversarial networks","author":"li","year":"2018","journal-title":"Proceedings of the European Conference on Computer Vision (ECCV)"},{"key":"ref2","article-title":"Nci-isbi 2013 challenge: automated segmentation of prostate structures","volume":"370","author":"bloch","year":"2015","journal-title":"The Cancer Imaging Archive"},{"key":"ref1","first-page":"998","article-title":"Metareg: Towards domain generalization using metaregularization","author":"balaji","year":"2018","journal-title":"Advances in neural information processing systems"},{"article-title":"Federated learning: Strategies for improving communication efficiency","year":"2016","author":"kone?n?","key":"ref20"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-59710-8_16"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2015.02.009"},{"article-title":"Learning to generalize: Meta-learning for domain generalization","year":"2017","author":"li","key":"ref24"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.591"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00566"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00153"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1038\/s41591-019-0727-5"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1109\/ISBI.2019.8759317"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00062"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00219"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00414"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1145\/3298981"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2020.3015224"},{"key":"ref54","first-page":"159","article-title":"Learning from extrinsic and intrinsic supervisions for domain generalization","author":"wang","year":"2020","journal-title":"European Conference on Computer Vision"},{"key":"ref53","first-page":"5334","article-title":"Generalizing to unseen domains via adversarial data augmentation","author":"volpi","year":"2018","journal-title":"Advances in neural information processing systems"},{"key":"ref52","first-page":"1004","article-title":"A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis","volume":"2","author":"sivaswamy","year":"2015","journal-title":"JSM Biomedical Imaging Data Papers"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/CBMS.2011.5999143"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.293"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2019.101570"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00258"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1016\/j.crvi.2004.02.006"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00815"},{"key":"ref15","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-030-58607-2_5","article-title":"Federated visual classification with real-world data distribution","author":"hsu","year":"2020"},{"article-title":"Learning to cluster in order to transfer across domains and tasks","year":"2017","author":"hsu","key":"ref16"},{"key":"ref17","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-030-58536-5_8","article-title":"Self-challenging improves cross-domain generalization","author":"huang","year":"2020"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1038\/s42256-020-0186-1"},{"key":"ref19","first-page":"158","article-title":"Undoing the damage of dataset bias","author":"khosla","year":"2012","journal-title":"European Conference on Computer Vision"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01387"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00233"},{"article-title":"A simple framework for contrastive learning of visual representations","year":"2020","author":"chen","key":"ref6"},{"key":"ref5","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-030-58545-7_18","article-title":"Learning to balance specificity and invariance for in and out of domain generalization","author":"chattopadhyay","year":"2020"},{"key":"ref8","first-page":"6450","article-title":"Domain generalization via model-agnostic learning of semantic features","author":"dou","year":"2019","journal-title":"Advances in neural information processing systems"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1038\/s41746-020-0265-z"},{"key":"ref49","first-page":"92","article-title":"Multi-institutional deep learning modeling without sharing patient data: A feasibility study on brain tumor segmentation","author":"sheller","year":"2018","journal-title":"International MICCAI Brainlesion Workshop"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58607-2_12"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/42.414625"},{"key":"ref45","first-page":"181","author":"roth","year":"2020","journal-title":"Domain Adaptation and Representation Transfer and Distributed and Collaborative Learning"},{"article-title":"Generalizing across domains via cross-gradient training","year":"2018","author":"shankar","key":"ref48"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58542-6_5"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1068\/p110337"},{"article-title":"Federated adversarial domain adaptation","year":"2019","author":"peng","key":"ref41"},{"key":"ref44","doi-asserted-by":"crossref","DOI":"10.1038\/s41746-020-00323-1","article-title":"The future of digital health with federated learning","author":"rieke","year":"2020"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01257"}],"event":{"name":"2021 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","start":{"date-parts":[[2021,6,20]]},"location":"Nashville, TN, USA","end":{"date-parts":[[2021,6,25]]}},"container-title":["2021 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9577055\/9577056\/09577482.pdf?arnumber=9577482","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,12]],"date-time":"2023-11-12T05:03:05Z","timestamp":1699765385000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9577482\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6]]},"references-count":61,"URL":"https:\/\/doi.org\/10.1109\/cvpr46437.2021.00107","relation":{},"subject":[],"published":{"date-parts":[[2021,6]]}}}