{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T14:21:39Z","timestamp":1730211699147,"version":"3.28.0"},"reference-count":32,"publisher":"IEEE","license":[{"start":{"date-parts":[[2020,10,21]],"date-time":"2020-10-21T00:00:00Z","timestamp":1603238400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2020,10,21]],"date-time":"2020-10-21T00:00:00Z","timestamp":1603238400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2020,10,21]],"date-time":"2020-10-21T00:00:00Z","timestamp":1603238400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020,10,21]]},"DOI":"10.1109\/csnet50428.2020.9265466","type":"proceedings-article","created":{"date-parts":[[2021,4,14]],"date-time":"2021-04-14T04:26:32Z","timestamp":1618374392000},"page":"1-8","source":"Crossref","is-referenced-by-count":7,"title":["Detecting abnormal DNS traffic using unsupervised machine learning"],"prefix":"10.1109","author":[{"given":"Thi Quynh","family":"Nguyen","sequence":"first","affiliation":[{"name":"University Paul Sabatier,Toulouse,France"}]},{"given":"Romain","family":"Laborde","sequence":"additional","affiliation":[{"name":"University Paul Sabatier,Toulouse,France"}]},{"given":"Abdelmalek","family":"Benzekri","sequence":"additional","affiliation":[{"name":"University Paul Sabatier,Toulouse,France"}]},{"given":"Bruno","family":"Qu'hen","sequence":"additional","affiliation":[{"name":"MODIS,Courbevoie,France"}]}],"member":"263","reference":[{"doi-asserted-by":"publisher","key":"ref32","DOI":"10.1007\/s12243-018-0673-0"},{"doi-asserted-by":"publisher","key":"ref31","DOI":"10.1109\/NTMS.2014.6814050"},{"doi-asserted-by":"publisher","key":"ref30","DOI":"10.1002\/widm.1249"},{"doi-asserted-by":"publisher","key":"ref10","DOI":"10.1016\/j.compeleceng.2018.11.003"},{"year":"0","journal-title":"Traffic Data from Kyoto University's Honeypots","key":"ref11"},{"year":"0","journal-title":"NSL-KDD | Datasets | Research | Canadian Institute for Cybersecurity | UNB","key":"ref12"},{"doi-asserted-by":"publisher","key":"ref13","DOI":"10.1109\/CCNC46108.2020.9045113"},{"doi-asserted-by":"publisher","key":"ref14","DOI":"10.1016\/j.engappai.2006.09.005"},{"doi-asserted-by":"publisher","key":"ref15","DOI":"10.1109\/NOMS.2008.4575276"},{"year":"0","journal-title":"1999 DARPA Intrusion Detection Evaluation Dataset | MIT Lincoln Laboratory","key":"ref16"},{"key":"ref17","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/978-3-030-45778-5_1","article-title":"Network Anomaly Detection Using Federated Deep Autoencoding Gaussian Mixture Model","volume":"12081","author":"chen","year":"2020","journal-title":"The Machine Learning Network"},{"doi-asserted-by":"publisher","key":"ref18","DOI":"10.1145\/3354265.3354267"},{"key":"ref19","first-page":"12","article-title":"HARNESSING PREDICTIVE MODELS FOR ASSISTING NETWORK FORENSIC INVESTIGATIONS OF DNS TUNNELS","author":"homem","year":"2017"},{"key":"ref28","first-page":"6","article-title":"AutoEpsDBSCAN: DBSCAN with Eps Automatic for Large Dataset","volume":"2","author":"gaonkar","year":"0"},{"year":"2020","journal-title":"Splunk","key":"ref4"},{"doi-asserted-by":"publisher","key":"ref27","DOI":"10.1145\/342009.335388"},{"year":"0","journal-title":"APT32 SeaLotus OceanLotus APT-C-00 Group G0050 | MITRE ATT&CK®","key":"ref3"},{"year":"0","journal-title":"KDD Cup 1999 data","key":"ref6"},{"doi-asserted-by":"publisher","key":"ref29","DOI":"10.1016\/S0031-3203(96)00142-2"},{"doi-asserted-by":"publisher","key":"ref5","DOI":"10.1109\/CEC.2004.1330898"},{"key":"ref8","first-page":"13","article-title":"Unsupervised Network Intrusion Detection Systems for Zero-Day Fast-Spreading Attacks and Botnets","author":"amoli","year":"0"},{"doi-asserted-by":"publisher","key":"ref7","DOI":"10.1016\/j.comcom.2012.01.016"},{"year":"0","journal-title":"Cybersecurity 2019–2020","key":"ref2"},{"doi-asserted-by":"publisher","key":"ref9","DOI":"10.1016\/j.cose.2011.12.012"},{"doi-asserted-by":"publisher","key":"ref1","DOI":"10.1109\/CSNet47905.2019.9108976"},{"doi-asserted-by":"publisher","key":"ref20","DOI":"10.1007\/978-3-030-24907-6_33"},{"key":"ref22","article-title":"Anomaly Detection Techniques in Python","author":"jose","year":"2019","journal-title":"Medium"},{"year":"2019","author":"berg","article-title":"Identifying DNS-tunneled traffic with predictive models","key":"ref21"},{"doi-asserted-by":"publisher","key":"ref24","DOI":"10.1007\/978-0-387-73003-5_196"},{"key":"ref23","first-page":"17","article-title":"SOME METHODS FOR CLASSIFICATION AND ANALYSIS OF MULTIVARIATE OBSERVATIONS","author":"macqueen","year":"0","journal-title":"Multivar Obs"},{"key":"ref26","first-page":"226","article-title":"A density-based algorithm for discovering clusters in large spatial databases with noise","volume":"96","author":"ester","year":"1996","journal-title":"KDD"},{"doi-asserted-by":"publisher","key":"ref25","DOI":"10.1111\/j.2517-6161.1977.tb01600.x"}],"event":{"name":"2020 4th Cyber Security in Networking Conference (CSNet)","start":{"date-parts":[[2020,10,21]]},"location":"Lausanne, Switzerland","end":{"date-parts":[[2020,10,23]]}},"container-title":["2020 4th Cyber Security in Networking Conference (CSNet)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9265454\/9265455\/09265466.pdf?arnumber=9265466","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,6,27]],"date-time":"2022-06-27T15:48:10Z","timestamp":1656344890000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9265466\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,10,21]]},"references-count":32,"URL":"https:\/\/doi.org\/10.1109\/csnet50428.2020.9265466","relation":{},"subject":[],"published":{"date-parts":[[2020,10,21]]}}}