{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,24]],"date-time":"2025-03-24T07:54:53Z","timestamp":1742802893543,"version":"3.28.0"},"reference-count":33,"publisher":"IEEE","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2016,11]]},"DOI":"10.1109\/ccbd.2016.027","type":"proceedings-article","created":{"date-parts":[[2017,7,17]],"date-time":"2017-07-17T20:43:46Z","timestamp":1500324226000},"page":"87-92","source":"Crossref","is-referenced-by-count":85,"title":["Financial Time-Series Data Analysis Using Deep Convolutional Neural Networks"],"prefix":"10.1109","author":[{"given":"Jou-Fan","family":"Chen","sequence":"first","affiliation":[]},{"given":"Wei-Lun","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Chun-Ping","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Szu-Hao","family":"Huang","sequence":"additional","affiliation":[]},{"given":"An-Pin","family":"Chen","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1016\/j.jmsy.2014.02.005"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1016\/j.compind.2014.10.006"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1145\/1961189.1961192"},{"journal-title":"Imaging time-series to improve classification and imputation","year":"2015","author":"wang","key":"ref30"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/TNN.2006.883005"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2003.03.023"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TNN.2007.891629"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1016\/j.dss.2013.09.013"},{"key":"ref14","article-title":"Convolutional networks for images, speech, and time series","volume":"3361","author":"lecun","year":"1995","journal-title":"The Handbook of Brain Theory and Neural Networks"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/5.726791"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1162\/neco.2006.18.7.1527"},{"key":"ref17","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1126\/science.1127647","article-title":"Reducing the dimensionality of data with neural networks","volume":"313","author":"hinton","year":"2006","journal-title":"Science"},{"journal-title":"Learning deep representation for face alignment with auxiliary attributes","year":"2015","author":"zhang","key":"ref18"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2009.5206545"},{"key":"ref28","first-page":"1339","article-title":"3D object recognition with deep belief nets","author":"nair","year":"2009","journal-title":"Advances in neural information processing systems"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1016\/j.ipm.2014.04.001"},{"key":"ref27","first-page":"3071","article-title":"In all likelihood, deep belief not enough","volume":"12","author":"theis","year":"2011","journal-title":"The Journal of Machine Learning Research"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2014.04.034"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2014.04.022"},{"key":"ref29","volume":"25","author":"palm","year":"2012","journal-title":"Prediction as A Candidate for Learning Deep Hierarchical Models of Data"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.dss.2013.02.006"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/5326.897083"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/72.935098"},{"journal-title":"Modeling high-frequency limit order book dynamics with support vector machines","year":"2013","author":"kercheval","key":"ref2"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2007.06.015"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/TNN.2003.820556"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/TNN.2011.2162429"},{"key":"ref22","first-page":"625","article-title":"Why does unsupervised pre-training help deep learning?","volume":"11","author":"erhan","year":"2010","journal-title":"The Journal of Machine Learning Research"},{"key":"ref21","first-page":"1","article-title":"Exploring strategies for training deep neural networks","volume":"10","author":"larochelle","year":"2009","journal-title":"The Journal of Machine Learning Research"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2014.2359471"},{"key":"ref23","first-page":"2563","article-title":"Kernel analysis of deep networks","volume":"12","author":"montavon","year":"2011","journal-title":"The Journal of Machine Learning Research"},{"key":"ref26","first-page":"689","article-title":"Multimodal deep learning","author":"ngiam","year":"2011","journal-title":"Proceedings of the 28th International Conference on Machine Learning (ICML-11)"},{"key":"ref25","first-page":"1097","article-title":"Imagenet classification with deep convolutional neural networks","author":"krizhevsky","year":"2012","journal-title":"Advances in neural information processing systems"}],"event":{"name":"2016 7th International Conference on Cloud Computing and Big Data (CCBD)","start":{"date-parts":[[2016,11,16]]},"location":"Macau, China","end":{"date-parts":[[2016,11,18]]}},"container-title":["2016 7th International Conference on Cloud Computing and Big Data (CCBD)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/7976699\/7979858\/07979885.pdf?arnumber=7979885","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,9,30]],"date-time":"2019-09-30T16:41:45Z","timestamp":1569861705000},"score":1,"resource":{"primary":{"URL":"http:\/\/ieeexplore.ieee.org\/document\/7979885\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,11]]},"references-count":33,"URL":"https:\/\/doi.org\/10.1109\/ccbd.2016.027","relation":{},"subject":[],"published":{"date-parts":[[2016,11]]}}}