{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,7]],"date-time":"2025-04-07T19:05:14Z","timestamp":1744052714389,"version":"3.37.3"},"reference-count":43,"publisher":"IEEE","license":[{"start":{"date-parts":[[2022,8,20]],"date-time":"2022-08-20T00:00:00Z","timestamp":1660953600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,8,20]],"date-time":"2022-08-20T00:00:00Z","timestamp":1660953600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/100009950","name":"Ministry of Education","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100009950","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022,8,20]]},"DOI":"10.1109\/case49997.2022.9926420","type":"proceedings-article","created":{"date-parts":[[2022,11,4]],"date-time":"2022-11-04T00:58:44Z","timestamp":1667523524000},"page":"2124-2131","source":"Crossref","is-referenced-by-count":4,"title":["CIPCaD-Bench: Continuous Industrial Process datasets for benchmarking Causal Discovery methods"],"prefix":"10.1109","author":[{"given":"Giovanni","family":"Menegozzo","sequence":"first","affiliation":[{"name":"University of Verona,Department of Computer Science,Verona,Italy,37100"}]},{"given":"Diego","family":"Dall'Alba","sequence":"additional","affiliation":[{"name":"University of Verona,Department of Computer Science,Verona,Italy,37100"}]},{"given":"Paolo","family":"Fiorini","sequence":"additional","affiliation":[{"name":"University of Verona,Department of Computer Science,Verona,Italy,37100"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1111\/j.1540-5915.2006.00124.x"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.3390\/jmmp6010010"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/CASE48305.2020.9216973"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/JPROC.2021.3058954"},{"volume-title":"Elements of Causal Inference: Foundations and Learning Algorithms.","year":"2017","author":"Peters","key":"ref5"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1145\/3241036"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/LRA.2021.3095907"},{"key":"ref8","first-page":"367","volume-title":"Graphical Models for Probabilistic and Causal Reasoning.","author":"Pearl","year":"1998"},{"article-title":"Data generating process to evaluate causal discovery techniques for time series data","year":"2021","author":"Lawrence","key":"ref9"},{"key":"ref10","first-page":"237","volume-title":"Results of the Cause-Effect Pair Challenge.","author":"Guyon","year":"2019"},{"issue":"32","key":"ref11","first-page":"1","article-title":"Distinguishing cause from effect using observational data: Methods and benchmarks","volume-title":"Journal of Machine Learning Research","volume":"17","author":"Mooij","year":"2016"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1126\/sciadv.aau4996"},{"article-title":"DoWhy: A Python package for causal inference","year":"2019","author":"Sharma","key":"ref13"},{"author":"Wongchokprasitti","key":"ref14","article-title":"pycausal"},{"author":"Zhang","key":"ref15","article-title":"causal-learn"},{"article-title":"Causal discovery toolbox: Uncover causal relationships in python","year":"2019","author":"Kalainathan","key":"ref16"},{"key":"ref17","article-title":"gcastle: A python toolbox for causal discovery","volume-title":"CoRR","author":"Zhang","year":"2021"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1007\/s10992-021-09601-z"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.3389\/fgene.2019.00524"},{"key":"ref20","article-title":"D\u2019ya like dags? A survey on structure learning and causal discovery","author":"Vowels","year":"2021","journal-title":"CoRR"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1186\/s40535-016-0018-x"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.2307\/1913236"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.2333\/bhmk.41.65"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1162\/153244303321897717"},{"article-title":"Estimating high-dimensional directed acyclic graphs with the pc-algorithm","year":"2005","author":"Kalisch","key":"ref25"},{"key":"ref26","first-page":"499","article-title":"Causal inference in the presence of latent variables and selection bias","volume-title":"Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence","author":"Spirtes"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1007\/s11063-021-10694-5"},{"article-title":"Directlingam: A direct method for learning a linear non-gaussian structural equation model","year":"2011","author":"Shimizu","key":"ref28"},{"key":"ref29","first-page":"2003","article-title":"A linear non-gaussian acyclic model for causal discovery","volume":"7","author":"Shimizu","year":"2006","journal-title":"J. Mach. Learn. Res."},{"article-title":"Dags with no tears: Continuous optimization for structure learning","year":"2018","author":"Zheng","key":"ref30"},{"article-title":"Learning sparse nonparametric dags","year":"2020","author":"Zheng","key":"ref31"},{"article-title":"On the role of sparsity and dag constraints for learning linear dags","year":"2021","author":"Ng","key":"ref32"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2021\/491"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611977172.48"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1016\/j.compchemeng.2021.107281"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1016\/0098-1354(93)80018-I"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1016\/j.compchemeng.2021.107281"},{"article-title":"tennessee-eastman-process\u201d alarm management dataset","year":"2020","author":"Manca","key":"ref38"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1016\/j.ifacol.2015.08.199"},{"article-title":"Additional Tennessee Eastman Process Simulation Data for Anomaly Detection Evaluation","year":"2017","author":"Rieth","key":"ref40"},{"article-title":"Tennessee eastman simulation dataset","year":"2019","author":"Chen","key":"ref41"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1016\/0098-1354(94)00113-3"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/TASE.2020.3022924"}],"event":{"name":"2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)","start":{"date-parts":[[2022,8,20]]},"location":"Mexico City, Mexico","end":{"date-parts":[[2022,8,24]]}},"container-title":["2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9926286\/9926419\/09926420.pdf?arnumber=9926420","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,24]],"date-time":"2024-01-24T06:17:53Z","timestamp":1706077073000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9926420\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,8,20]]},"references-count":43,"URL":"https:\/\/doi.org\/10.1109\/case49997.2022.9926420","relation":{},"subject":[],"published":{"date-parts":[[2022,8,20]]}}}