{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T01:50:59Z","timestamp":1740102659114,"version":"3.37.3"},"reference-count":30,"publisher":"IEEE","license":[{"start":{"date-parts":[[2023,11,28]],"date-time":"2023-11-28T00:00:00Z","timestamp":1701129600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,11,28]],"date-time":"2023-11-28T00:00:00Z","timestamp":1701129600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100020950","name":"National Science and Technology Council","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100020950","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023,11,28]]},"DOI":"10.1109\/candar60563.2023.00011","type":"proceedings-article","created":{"date-parts":[[2024,1,25]],"date-time":"2024-01-25T18:26:32Z","timestamp":1706207192000},"page":"20-29","source":"Crossref","is-referenced-by-count":0,"title":["Accelerate Inference of CNN Models on CPU via Column Combining Based on Simulated Annealing"],"prefix":"10.1109","author":[{"given":"Chien-Hung","family":"Lin","sequence":"first","affiliation":[{"name":"National Taiwan University,Department of Computer Science and Information Engineering,Taipei,Taiwan"}]},{"given":"Ding-Yong","family":"Hong","sequence":"additional","affiliation":[{"name":"Institute of Information Science, Academia Sinica,Taipei,Taiwan"}]},{"given":"Pangfeng","family":"Liu","sequence":"additional","affiliation":[{"name":"National Taiwan University,Department of Computer Science and Information Engineering,Taipei,Taiwan"}]},{"given":"Jan-Jan","family":"Wu","sequence":"additional","affiliation":[{"name":"Institute of Information Science, Academia Sinica,Taipei,Taiwan"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1145\/3065386"},{"key":"ref2","article-title":"Very deep convolutional networks for large-scale image recognition","author":"Simonyan","year":"2014","journal-title":"arXiv preprint arXiv:1409.1556"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref4","article-title":"Lets keep it simple, using simple architectures to outperform deeper and more complex architectures","author":"Hasanpour","year":"2016","journal-title":"arXiv preprint arXiv:1608.06037"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.690"},{"key":"ref8","article-title":"Faster r-cnn: Towards real-time object detection with region proposal networks","volume":"28","author":"Ren","year":"2015","journal-title":"Advances in neural information processing systems"},{"key":"ref9","article-title":"Coca: Contrastive captioners are image-text foundation models","author":"Yu","year":"2022","journal-title":"arXiv preprint arXiv:2205.01917"},{"key":"ref10","article-title":"Compressing deep convolutional networks using vector quantization","author":"Gong","year":"2014","journal-title":"arXiv preprint arXiv:1412.6115"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.155"},{"key":"ref12","first-page":"17629","article-title":"Pruning filter in filter","volume":"33","author":"Meng","year":"2020","journal-title":"Advances in Neural Information Processing Systems"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/SC41405.2020.00020"},{"key":"ref14","article-title":"Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding","author":"Han","year":"2015","journal-title":"arXiv preprint arXiv:1510.00149"},{"key":"ref15","article-title":"Learning both weights and connections for efficient neural network","volume":"28","author":"Han","year":"2015","journal-title":"Advances in neural information processing systems"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1145\/3297858.3304028"},{"key":"ref17","first-page":"256","article-title":"Systolic arrays (for vlsi)","volume":"1","author":"Kung","year":"1979","journal-title":"Sparse Matrix Proceedings 1978"},{"key":"ref18","first-page":"579","article-title":"Tvm: An automated end-to-end optimizing compiler for deep learning","volume-title":"Proceedings of the 13th USENIX Conference on Operating Systems Design and Implementation","author":"Chen"},{"key":"ref19","article-title":"Pruning filters for efficient convnets","author":"Li","year":"2016","journal-title":"arXiv preprint arXiv:1608.08710"},{"key":"ref20","article-title":"Rethinking the value of network pruning","author":"Liu","year":"2018","journal-title":"arXiv preprint arXiv:1810.05270"},{"key":"ref21","article-title":"cudnn: Efficient primitives for deep learning","author":"Chetlur","year":"2014","journal-title":"arXiv preprint arXiv:1410.0759"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1007\/978-94-015-7744-1_2"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1166\/jctn.2009.1230"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1016\/0898-1221(94)90077-9"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-015-0816-y"},{"issue":"7","key":"ref26","first-page":"3","article-title":"Tiny imagenet visual recognition challenge","volume":"7","author":"Le","year":"2015","journal-title":"CS 231N"},{"key":"ref27","article-title":"Pytorch: An imperative style, high-performance deep learning library","volume":"32","author":"Paszke","year":"2019","journal-title":"Advances in neural information processing systems"},{"key":"ref28","article-title":"Picking winning tickets before training by preserving gradient flow","author":"Wang","year":"2020","journal-title":"arXiv preprint arXiv:2002.07376"},{"key":"ref29","article-title":"Snip: Single-shot network pruning based on connection sensitivity","author":"Lee","year":"2018","journal-title":"arXiv preprint arXiv:1810.02340"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/BigData50022.2020.9378489"}],"event":{"name":"2023 Eleventh International Symposium on Computing and Networking (CANDAR)","start":{"date-parts":[[2023,11,28]]},"location":"Matsue, Japan","end":{"date-parts":[[2023,12,1]]}},"container-title":["2023 Eleventh International Symposium on Computing and Networking (CANDAR)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/10405423\/10405851\/10406179.pdf?arnumber=10406179","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T08:48:09Z","timestamp":1706777289000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10406179\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11,28]]},"references-count":30,"URL":"https:\/\/doi.org\/10.1109\/candar60563.2023.00011","relation":{},"subject":[],"published":{"date-parts":[[2023,11,28]]}}}