{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T01:14:35Z","timestamp":1740100475854,"version":"3.37.3"},"reference-count":24,"publisher":"IEEE","license":[{"start":{"date-parts":[[2021,12,15]],"date-time":"2021-12-15T00:00:00Z","timestamp":1639526400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2021,12,15]],"date-time":"2021-12-15T00:00:00Z","timestamp":1639526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,12,15]],"date-time":"2021-12-15T00:00:00Z","timestamp":1639526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,12,15]]},"DOI":"10.1109\/bigdata52589.2021.9671994","type":"proceedings-article","created":{"date-parts":[[2022,1,13]],"date-time":"2022-01-13T20:39:16Z","timestamp":1642106356000},"page":"3042-3049","source":"Crossref","is-referenced-by-count":2,"title":["Anomaly detection of high-dimensional sparse data based on Ensemble Generative Adversarial Networks"],"prefix":"10.1109","author":[{"given":"Wanghu","family":"Chen","sequence":"first","affiliation":[]},{"given":"Meilin","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Chenhan","family":"Zhai","sequence":"additional","affiliation":[]},{"given":"Mengyang","family":"Shen","sequence":"additional","affiliation":[]},{"given":"Pengbo","family":"Lv","sequence":"additional","affiliation":[]},{"given":"Ali","family":"Arshad","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611974973.11"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-59050-9_12"},{"key":"ref12","article-title":"Efficient gan-based anomaly detection","author":"zenati","year":"2018","journal-title":"In International Conference on Learning Representations Workshop"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM.2018.00088"},{"article-title":"Ganomaly:Semi-supervised anomaly detection via adversarial training","year":"2018","author":"akcay","key":"ref14"},{"key":"ref15","first-page":"1878","article-title":"Unsupervised Anomaly Detection In Digital Pathology Using GANs","author":"pocevi?i?te","year":"2021","journal-title":"2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/ISBI45749.2020.9098374"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/ICMLA51294.2020.00114"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/PHM-Jinan48558.2020.00066"},{"key":"ref19","first-page":"2672","article-title":"Generative adversarial nets","author":"goodfellow","year":"2014","journal-title":"Advances in neural information processing systems"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-59050-9_12"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/COMST.2015.2494502"},{"key":"ref6","first-page":"392","article-title":"Algorithms for mining distance based outliers in large data sets","author":"knorr","year":"1998","journal-title":"Proc 24th Int Conf V ery Large Databases Conf"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/ICDSP.2015.7251924"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2932769"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1145\/335191.335388"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/TrustCom\/BigDataSE.2019.00045"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1007\/978-94-015-3994-4"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/ICTKE.2012.6408540"},{"article-title":"AdaGAN: Boosting Generative Models[J]","year":"2017","author":"tolstikhin","key":"ref20"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.3390\/app8091468"},{"article-title":"Clustering and Unsupervised Anomaly Detection with L2 Normalized Deep Auto-Encoder Representations[J]","year":"2018","author":"aytekin","key":"ref21"},{"article-title":"Pyod: A python toolbox for scalable outlier detection","year":"0","author":"zhao","key":"ref24"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/ICCAR.2019.8813415"}],"event":{"name":"2021 IEEE International Conference on Big Data (Big Data)","start":{"date-parts":[[2021,12,15]]},"location":"Orlando, FL, USA","end":{"date-parts":[[2021,12,18]]}},"container-title":["2021 IEEE International Conference on Big Data (Big Data)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9671263\/9671273\/09671994.pdf?arnumber=9671994","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,10]],"date-time":"2022-05-10T16:55:23Z","timestamp":1652201723000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9671994\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,12,15]]},"references-count":24,"URL":"https:\/\/doi.org\/10.1109\/bigdata52589.2021.9671994","relation":{},"subject":[],"published":{"date-parts":[[2021,12,15]]}}}