{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T01:05:54Z","timestamp":1740099954389,"version":"3.37.3"},"reference-count":29,"publisher":"IEEE","license":[{"start":{"date-parts":[[2020,12,10]],"date-time":"2020-12-10T00:00:00Z","timestamp":1607558400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2020,12,10]],"date-time":"2020-12-10T00:00:00Z","timestamp":1607558400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2020,12,10]],"date-time":"2020-12-10T00:00:00Z","timestamp":1607558400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020,12,10]]},"DOI":"10.1109\/bigdata50022.2020.9378325","type":"proceedings-article","created":{"date-parts":[[2021,3,19]],"date-time":"2021-03-19T21:10:21Z","timestamp":1616188221000},"page":"2735-2742","source":"Crossref","is-referenced-by-count":3,"title":["Autoencoder-based outlier detection for sparse, high dimensional data"],"prefix":"10.1109","author":[{"given":"Wanghu","family":"Chen","sequence":"first","affiliation":[]},{"given":"Huijun","family":"Li","sequence":"additional","affiliation":[]},{"given":"Jing","family":"Li","sequence":"additional","affiliation":[]},{"given":"Ali","family":"Arshad","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref10","first-page":"392","article-title":"Algorithms for mining distancebased outliers in large datasets","author":"knox","year":"1998","journal-title":"Proceedings of the International Conference on Very Large Data Bases"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1016\/j.is.2015.07.006"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/RoboMech.2017.8261116"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/EAIT.2011.25"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1093\/biomet\/asv021"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/ISKE.2015.64"},{"key":"ref16","first-page":"1517","article-title":"Generative adversarial active learning for unsupervised outlier detection","author":"liu","year":"2020","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/ICMLC.2006.258598"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/CDAN.2016.7570924"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/CCDC49329.2020.9164610"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2900225"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1108\/IJICC-07-2015-0024"},{"key":"ref27","first-page":"1107","article-title":"Non-convex robust pca","author":"netrapalli","year":"2014","journal-title":"Advances in neural information processing systems"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/ICMLA.2016.0040"},{"key":"ref6","article-title":"Outlier detection using autoencoders","author":"lyudchik","year":"2016","journal-title":"Tech Rep CERN-STUDENTS-Note-2016-079"},{"article-title":"Pyod: A python toolbox for scalable outlier detection","year":"2019","author":"zhao","key":"ref29"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1145\/1541880.1541882"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1007\/978-981-13-1498-8_31"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1145\/375663.375668"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/TrustCom\/BigDataSE.2019.00045"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2017.09.037"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1007\/978-94-015-3994-4"},{"key":"ref20","article-title":"Deep autoencoding gaussian mixture model for unsupervised anomaly detection","author":"zong","year":"2018","journal-title":"International Conference on Learning Representations"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611974973.11"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2017.2713048"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1198\/1061860032148"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0152173"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/JSTSP.2016.2555239"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1080\/00401706.2015.1093962"}],"event":{"name":"2020 IEEE International Conference on Big Data (Big Data)","start":{"date-parts":[[2020,12,10]]},"location":"Atlanta, GA, USA","end":{"date-parts":[[2020,12,13]]}},"container-title":["2020 IEEE International Conference on Big Data (Big Data)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9377717\/9377728\/09378325.pdf?arnumber=9378325","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,6,27]],"date-time":"2022-06-27T15:47:25Z","timestamp":1656344845000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9378325\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,12,10]]},"references-count":29,"URL":"https:\/\/doi.org\/10.1109\/bigdata50022.2020.9378325","relation":{},"subject":[],"published":{"date-parts":[[2020,12,10]]}}}