{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T11:06:09Z","timestamp":1730199969127,"version":"3.28.0"},"reference-count":39,"publisher":"IEEE","license":[{"start":{"date-parts":[[2019,12,1]],"date-time":"2019-12-01T00:00:00Z","timestamp":1575158400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2019,12,1]],"date-time":"2019-12-01T00:00:00Z","timestamp":1575158400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2019,12,1]],"date-time":"2019-12-01T00:00:00Z","timestamp":1575158400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019,12]]},"DOI":"10.1109\/bigdata47090.2019.9006123","type":"proceedings-article","created":{"date-parts":[[2020,2,25]],"date-time":"2020-02-25T01:05:34Z","timestamp":1582592734000},"page":"5353-5358","source":"Crossref","is-referenced-by-count":6,"title":["Optimizing Variational Graph Autoencoder for Community Detection"],"prefix":"10.1109","author":[{"given":"Jun Jin","family":"Choong","sequence":"first","affiliation":[]},{"given":"Xin","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Tsuyoshi","family":"Murata","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1145\/3132847.3132967"},{"key":"ref38","first-page":"1293","article-title":"Learning Deep Representations for Graph Clustering","author":"tian","year":"2014","journal-title":"AAAI Conference on Artificial Intelligence"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1145\/990308.990313"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevE.69.026113"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1088\/1742-5468\/2005\/09\/P09008"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1145\/2939672.2939754"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1145\/3289600.3291029"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1145\/3159652.3159706"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1088\/1742-5468\/2008\/10\/P10008"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1007\/s10115-013-0693-z"},{"key":"ref10","first-page":"5580","article-title":"What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?","author":"kendall","year":"2017","journal-title":"Advances in Neural IInformation Processing Systems"},{"journal-title":"Proceedings of the 2nd International Conference on Learning Representations","article-title":"Auto-Encoding Variational Bayes","year":"2014","author":"kingma","key":"ref11"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1007\/s003579900004"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevE.83.016107"},{"journal-title":"Workshop on Bayesian Deep Learning","article-title":"Variational Graph Auto-Encoders","year":"2017","author":"kipf","key":"ref14"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM.2018.00022"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2018\/362"},{"journal-title":"arXiv preprint arXiv 1902 05023","article-title":"Simplifying graph convolutional networks","year":"2019","author":"wu","key":"ref17"},{"key":"ref18","first-page":"1126","article-title":"Model-agnostic meta-learning for fast adaptation of deep networks","author":"finn","year":"2017","journal-title":"Proceedings of the 34th International Conference on Machine Learning-Volume 70"},{"journal-title":"International Conference on Learning Representations","article-title":"MetaLearning Update Rules for Unsupervised Representation Learning","year":"2019","author":"metz","key":"ref19"},{"key":"ref28","first-page":"40","article-title":"Revisiting Semisupervised Learning with Graph Embeddings","author":"yang","year":"2016","journal-title":"Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/TNN.2008.2005605"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevE.78.046110"},{"key":"ref3","doi-asserted-by":"crossref","first-page":"8577","DOI":"10.1073\/pnas.0601602103","article-title":"Modularity and Community Structure in Networks","volume":"103","author":"newman","year":"2006","journal-title":"Proceedings of the National Academy of Sciences"},{"journal-title":"International Conference on Learning Representations","article-title":"Semi-supervised Classification with Graph Convolutional Networks","year":"2017","author":"kipf","key":"ref6"},{"key":"ref29","first-page":"849","article-title":"On Spectral Clustering: Analysis and an Algorithm","author":"ng","year":"2002","journal-title":"Advances in neural information processing systems"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.physrep.2016.09.002"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1145\/2623330.2623732"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2013.50"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1016\/j.physrep.2009.11.002"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1214\/09-SS057"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1086\/jar.33.4.3629752"},{"key":"ref20","first-page":"9690","article-title":"Coupled variational bayes via optimization embedding","author":"dai","year":"2018","journal-title":"Advances in neural information processing systems"},{"journal-title":"International Conference on Learning Representations","article-title":"Adam: A Method for Stochastic Optimization","year":"2014","author":"kingma","key":"ref22"},{"key":"ref21","first-page":"6691","article-title":"Neural expectation maximization","author":"greff","year":"2017","journal-title":"Advances in neural information processing systems"},{"key":"ref24","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1145\/168304.168306","article-title":"Keeping the Neural Networks Simple by Minimizing the Description Length of the Weights","author":"hinton","year":"1993","journal-title":"Proceedings of the Sixth Annual Conference on Computational Learning Theory"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1111\/j.2517-6161.1977.tb01600.x"},{"article-title":"Algorithms for Graph Partitioning on the Planted Partition Model","year":"2000","author":"condon","key":"ref26"},{"key":"ref25","doi-asserted-by":"crossref","first-page":"7821","DOI":"10.1073\/pnas.122653799","article-title":"Community Structure in Social and Biological Networks","volume":"99","author":"girvan","year":"2002","journal-title":"Proceedings of the National Academy of Sciences"}],"event":{"name":"2019 IEEE International Conference on Big Data (Big Data)","start":{"date-parts":[[2019,12,9]]},"location":"Los Angeles, CA, USA","end":{"date-parts":[[2019,12,12]]}},"container-title":["2019 IEEE International Conference on Big Data (Big Data)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/8986695\/9005444\/09006123.pdf?arnumber=9006123","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,17]],"date-time":"2022-07-17T17:50:12Z","timestamp":1658080212000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9006123\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,12]]},"references-count":39,"URL":"https:\/\/doi.org\/10.1109\/bigdata47090.2019.9006123","relation":{},"subject":[],"published":{"date-parts":[[2019,12]]}}}