{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,17]],"date-time":"2025-04-17T06:07:26Z","timestamp":1744870046173,"version":"3.28.0"},"reference-count":41,"publisher":"IEEE","license":[{"start":{"date-parts":[[2019,12,1]],"date-time":"2019-12-01T00:00:00Z","timestamp":1575158400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2019,12,1]],"date-time":"2019-12-01T00:00:00Z","timestamp":1575158400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2019,12,1]],"date-time":"2019-12-01T00:00:00Z","timestamp":1575158400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019,12]]},"DOI":"10.1109\/bigdata47090.2019.9006091","type":"proceedings-article","created":{"date-parts":[[2020,2,25]],"date-time":"2020-02-25T06:05:34Z","timestamp":1582610734000},"page":"2523-2531","source":"Crossref","is-referenced-by-count":17,"title":["WOTBoost: Weighted Oversampling Technique in Boosting for imbalanced learning"],"prefix":"10.1109","author":[{"given":"Wenhao","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Ramin","family":"Ramezani","sequence":"additional","affiliation":[]},{"given":"Arash","family":"Naeim","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1016\/S0168-1699(99)00046-0"},{"key":"ref38","article-title":"The promise repository of software engineering databases","author":"sayyad shirabad","year":"2005","journal-title":"School of Information Technology and Engineering University of Ottawa Canada"},{"journal-title":"UCI repository of machine learning databases 1998","year":"1998","author":"blake","key":"ref33"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1006\/jcss.1997.1504"},{"key":"ref31","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1007\/978-981-13-1280-9_5","article-title":"Improvement in boosting method by using rustboost technique for class imbalanced data","author":"kumar","year":"2019","journal-title":"Recent Developments in Machine Learning and Data Analytics"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1145\/1007730.1007736"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2008.07.018"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/ICNN.1995.487555"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1118\/1.2786864"},{"journal-title":"UCI Machine Learning Repository","year":"2017","author":"dua","key":"ref34"},{"key":"ref10","first-page":"176","article-title":"Classification with class imbalance problem: a review","volume":"7","author":"ali","year":"2015","journal-title":"Int J Advance Soft Comput Appl"},{"key":"ref40","doi-asserted-by":"crossref","first-page":"1285","DOI":"10.1126\/science.3287615","article-title":"Measuring the accuracy of diagnostic systems","volume":"240","author":"swets","year":"1988","journal-title":"Science"},{"key":"ref11","first-page":"878","article-title":"Borderline-smote: a new over-sampling method in imbalanced data sets learning","author":"han","year":"2005","journal-title":"Int Conf Intell Comput"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1007\/s10844-015-0368-1"},{"key":"ref13","first-page":"1322","article-title":"Adaptive synthetic sampling approach for imbalanced learning","author":"he","year":"2008","journal-title":"In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-01307-2_43"},{"journal-title":"Gensample A genetic algorithm for oversampling in imbalanced datasets","year":"2019","author":"karia","key":"ref15"},{"key":"ref16","first-page":"71","article-title":"Learning optimal threshold on resampling data to deal with class imbalance","author":"thai-nghe","year":"2010","journal-title":"In Proc IEEE RIVF International Conference on Computing and Telecommunication Technologies"},{"key":"ref17","first-page":"448","article-title":"An experiment with the edited nearest-neighbor rule","author":"tomek","year":"1976","journal-title":"IEEE Transactions on Systems Man and Cybernetics"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1142\/S0218001409007326"},{"key":"ref19","first-page":"264","article-title":"z-svm: an svm for improved classification of imbalanced data","author":"imam","year":"2006","journal-title":"Australian Joint Conference on Artificial Intelligence"},{"key":"ref28","first-page":"107","article-title":"Smoteboost: Improving prediction of the minority class in boosting","author":"chawla","year":"2003","journal-title":"Proceedings of the International Conference on Knowledge Discovery and Data Mining"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1023\/A:1007452223027"},{"key":"ref27","first-page":"148","article-title":"Experiments with a new boosting algorithm","volume":"96","author":"freund","year":"1996","journal-title":"In ICML"},{"key":"ref3","first-page":"8","article-title":"Combining data mining and machine learning for effective user profiling","author":"fawcett","year":"1996","journal-title":"In KDD"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/B978-1-55860-335-6.50026-X"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/TSMCA.2009.2029559"},{"journal-title":"Data Mining Approaches for Intrusion Detection","year":"1998","author":"lee","key":"ref5"},{"key":"ref8","first-page":"113","article-title":"Reducing multiclass to binary: A unifying approach for margin classifiers","author":"allwein","year":"2000","journal-title":"Journal of Machine Learning Research"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1613\/jair.953"},{"journal-title":"Classification of Imbalance Data using Tomek Link (T-Link) Combined with Random Undersampling (RUS) as a Data Reduction Method","year":"2016","author":"elhassan","key":"ref2"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1613\/jair.1.11192"},{"key":"ref1","first-page":"1","article-title":"Machine learning from imbalanced data sets 101","volume":"68","author":"provost","year":"2000","journal-title":"the AAAI'2000 Workshop on Imbalanced Data Sets"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/TSMCB.2008.2002909"},{"key":"ref22","first-page":"139","article-title":"One-class svms for document classification","volume":"2","author":"manevitz","year":"0","journal-title":"Journal of Machine Learning Research"},{"key":"ref21","doi-asserted-by":"crossref","first-page":"3189","DOI":"10.1109\/IJCNN.2004.1381186","article-title":"Biased support vector machine for relevance feedback in image retrieval","volume":"4","author":"hoi","year":"2004","journal-title":"in 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat No 04CH37541)"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1145\/502512.502540"},{"key":"ref41","first-page":"179","article-title":"Addressing the curse of imbalanced training sets: one-sided selection","author":"kubat","year":"1997","journal-title":"In ICML"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1080\/09540091.2018.1560394"},{"key":"ref26","first-page":"1","article-title":"Ensemble methods in machine learning","author":"dietterich","year":"2000","journal-title":"6th Int Workshop on Multiple Classifier Sys"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1007\/3-540-36755-1_23"}],"event":{"name":"2019 IEEE International Conference on Big Data (Big Data)","start":{"date-parts":[[2019,12,9]]},"location":"Los Angeles, CA, USA","end":{"date-parts":[[2019,12,12]]}},"container-title":["2019 IEEE International Conference on Big Data (Big Data)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/8986695\/9005444\/09006091.pdf?arnumber=9006091","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,17]],"date-time":"2022-07-17T21:54:25Z","timestamp":1658094865000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9006091\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,12]]},"references-count":41,"URL":"https:\/\/doi.org\/10.1109\/bigdata47090.2019.9006091","relation":{},"subject":[],"published":{"date-parts":[[2019,12]]}}}