{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T11:10:44Z","timestamp":1730200244741,"version":"3.28.0"},"reference-count":26,"publisher":"IEEE","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018,12]]},"DOI":"10.1109\/bigdata.2018.8622026","type":"proceedings-article","created":{"date-parts":[[2019,1,25]],"date-time":"2019-01-25T03:07:18Z","timestamp":1548385638000},"page":"1015-1022","source":"Crossref","is-referenced-by-count":5,"title":["Efficient Principal Subspace Projection of Streaming Data Through Fast Similarity Matching"],"prefix":"10.1109","author":[{"given":"Andrea","family":"Giovannucci","sequence":"first","affiliation":[]},{"given":"Victor","family":"Minden","sequence":"additional","affiliation":[]},{"given":"Cengiz","family":"Pehlevan","sequence":"additional","affiliation":[]},{"given":"Dmitri B.","family":"Chklovskii","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"doi-asserted-by":"publisher","key":"ref10","DOI":"10.1109\/Allerton.2012.6483308"},{"key":"ref11","first-page":"266","article-title":"Robust stochastic principal component analysis","author":"goes","year":"2014","journal-title":"Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics"},{"doi-asserted-by":"publisher","key":"ref12","DOI":"10.1007\/11776420_33"},{"doi-asserted-by":"publisher","key":"ref13","DOI":"10.1111\/insr.12220"},{"doi-asserted-by":"publisher","key":"ref14","DOI":"10.1109\/TPAMI.2003.1217609"},{"doi-asserted-by":"publisher","key":"ref15","DOI":"10.1162\/neco_a_01018"},{"doi-asserted-by":"publisher","key":"ref16","DOI":"10.1137\/1031049"},{"key":"ref17","first-page":"707","article-title":"Incremental singular value decomposition of uncertain data with missing values","author":"brand","year":"2002","journal-title":"Proceedings of the 7th European Conference on Computer Vision-Part I"},{"doi-asserted-by":"publisher","key":"ref18","DOI":"10.1016\/j.laa.2005.07.021"},{"doi-asserted-by":"publisher","key":"ref19","DOI":"10.1007\/BF01396012"},{"doi-asserted-by":"publisher","key":"ref4","DOI":"10.1109\/IJCNN.1989.118615"},{"doi-asserted-by":"publisher","key":"ref3","DOI":"10.1016\/0893-6080(89)90044-0"},{"doi-asserted-by":"publisher","key":"ref6","DOI":"10.1109\/78.295198"},{"doi-asserted-by":"publisher","key":"ref5","DOI":"10.1007\/BF00198094"},{"year":"1996","author":"diamantaras","journal-title":"Principal component Neural Networks Theory and Applications","key":"ref8"},{"doi-asserted-by":"publisher","key":"ref7","DOI":"10.1109\/78.365290"},{"key":"ref2","doi-asserted-by":"crossref","first-page":"559","DOI":"10.1080\/14786440109462720","article-title":"On lines and planes of closest fit to systems of points in space","volume":"2","author":"pearson","year":"1901","journal-title":"The London Edinburgh and Dublin Philosophical Magazine and Journal of Science"},{"key":"ref9","article-title":"Randomized online PCA algorithms with regret bounds that are logarithmic in the dimension","volume":"9","author":"warmuth","year":"2008","journal-title":"J Mach Learn Res"},{"doi-asserted-by":"publisher","key":"ref1","DOI":"10.1162\/NECO_a_00745"},{"doi-asserted-by":"publisher","key":"ref20","DOI":"10.1007\/BF00275687"},{"doi-asserted-by":"publisher","key":"ref22","DOI":"10.1214\/aos\/1009210544"},{"key":"ref21","article-title":"Convergence analysis of complementary candid incremental principal component analysis","author":"zhang","year":"2001","journal-title":"Comput Sci Eng Michigan State Univ East Tech Rep"},{"year":"2016","journal-title":"ORL Face Database","key":"ref24"},{"year":"2016","journal-title":"Popular MATLAB face databases","key":"ref23"},{"year":"1996","author":"golub","journal-title":"Matrix Computations","key":"ref26"},{"doi-asserted-by":"publisher","key":"ref25","DOI":"10.1109\/5.726791"}],"event":{"name":"2018 IEEE International Conference on Big Data (Big Data)","start":{"date-parts":[[2018,12,10]]},"location":"Seattle, WA, USA","end":{"date-parts":[[2018,12,13]]}},"container-title":["2018 IEEE International Conference on Big Data (Big Data)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/8610059\/8621858\/08622026.pdf?arnumber=8622026","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,26]],"date-time":"2022-01-26T23:59:49Z","timestamp":1643241589000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8622026\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,12]]},"references-count":26,"URL":"https:\/\/doi.org\/10.1109\/bigdata.2018.8622026","relation":{},"subject":[],"published":{"date-parts":[[2018,12]]}}}