{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T11:04:49Z","timestamp":1730199889910,"version":"3.28.0"},"reference-count":20,"publisher":"IEEE","license":[{"start":{"date-parts":[[2021,12,9]],"date-time":"2021-12-09T00:00:00Z","timestamp":1639008000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2021,12,9]],"date-time":"2021-12-09T00:00:00Z","timestamp":1639008000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,12,9]],"date-time":"2021-12-09T00:00:00Z","timestamp":1639008000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,12,9]]},"DOI":"10.1109\/bibm52615.2021.9669613","type":"proceedings-article","created":{"date-parts":[[2022,1,14]],"date-time":"2022-01-14T20:40:30Z","timestamp":1642192830000},"page":"1270-1275","source":"Crossref","is-referenced-by-count":4,"title":["Temporal Graph Representation Learning for Autism spectrum disorder Brain Networks"],"prefix":"10.1109","author":[{"given":"Peng","family":"Cao","sequence":"first","affiliation":[]},{"given":"Guangqi","family":"Wen","sequence":"additional","affiliation":[]},{"given":"Lanting","family":"Li","sequence":"additional","affiliation":[]},{"given":"Xiaoli","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jinzhu","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Osmar","family":"Zaiane","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM.2009.125"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1038\/mp.2013.78"},{"key":"ref12","first-page":"10","article-title":"Towards automated analysis of connectomes: The configurable pipeline for the analysis of connectomes (c-pac)","volume":"42","author":"craddock","year":"2013","journal-title":"Front Neuroinform"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1145\/3292500.3330921"},{"key":"ref14","doi-asserted-by":"crossref","first-page":"70","DOI":"10.3389\/fninf.2019.00070","article-title":"ASD-DiagNet: A hybrid learning approach for detection of Autism Spectrum Disorder using fMRI data","volume":"13","author":"saeed","year":"2019","journal-title":"Frontiers in Neuroinformatics"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1145\/3292500.3330982"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2016.09.046"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-00931-1_24"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-66179-7_21"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2021.102233"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2019.2933160"},{"key":"ref3","article-title":"Semi-supervised classification with graph convolutional networks","author":"kipf","year":"2016","journal-title":"arXiv preprint 1609 02907"},{"key":"ref6","article-title":"A deep graph neural network architecture for modelling spatio-temporal dynamics in resting-stating functional mri data","author":"azevedo","year":"2020","journal-title":"BioRxiv"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-59728-3_52"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2021.102063"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2018.03.013"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2020.104096"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1515\/revneuro-2020-0043"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TBME.2019.2957921"},{"key":"ref20","first-page":"926","article-title":"Reasoning with neural tensor networks for knowledge base completion","author":"socher","year":"2013","journal-title":"In Advances in Neural Information Processing Systems"}],"event":{"name":"2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","start":{"date-parts":[[2021,12,9]]},"location":"Houston, TX, USA","end":{"date-parts":[[2021,12,12]]}},"container-title":["2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9669261\/9669139\/09669613.pdf?arnumber=9669613","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,10]],"date-time":"2022-05-10T16:56:56Z","timestamp":1652201816000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9669613\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,12,9]]},"references-count":20,"URL":"https:\/\/doi.org\/10.1109\/bibm52615.2021.9669613","relation":{},"subject":[],"published":{"date-parts":[[2021,12,9]]}}}