{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T11:10:45Z","timestamp":1730200245221,"version":"3.28.0"},"reference-count":32,"publisher":"IEEE","license":[{"start":{"date-parts":[[2019,11,1]],"date-time":"2019-11-01T00:00:00Z","timestamp":1572566400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2019,11,1]],"date-time":"2019-11-01T00:00:00Z","timestamp":1572566400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2019,11,1]],"date-time":"2019-11-01T00:00:00Z","timestamp":1572566400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019,11]]},"DOI":"10.1109\/bibm47256.2019.8983158","type":"proceedings-article","created":{"date-parts":[[2020,2,7]],"date-time":"2020-02-07T07:49:51Z","timestamp":1581061791000},"page":"2702-2708","source":"Crossref","is-referenced-by-count":3,"title":["Effects of annotation granularity in deep learning models for histopathological images"],"prefix":"10.1109","author":[{"given":"Jiangbo","family":"Shi","sequence":"first","affiliation":[]},{"given":"Zeyu","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Haichuan","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Pargorn","family":"Puttapirat","sequence":"additional","affiliation":[]},{"given":"Chunbao","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Xiangrong","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Chen","family":"Li","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref32","first-page":"1","author":"chaurasia","year":"0","journal-title":"Linknet Exploiting encoder representations for efficient semantic segmentation"},{"key":"ref31","first-page":"2117","author":"lin","year":"0","journal-title":"Feature pyramid networks for object detection"},{"journal-title":"Mobilenets Efficient convolutional neural networks for mobile vision applications","year":"2017","author":"howard","key":"ref30"},{"key":"ref10","first-page":"770","author":"he","year":"0","journal-title":"Deep residual learning for image recognition"},{"journal-title":"Very Deep Convolutional Networks for Large-scale Image Recognition","year":"2014","author":"simonyan","key":"ref11"},{"key":"ref12","first-page":"644","author":"xia","year":"0","journal-title":"Patch-level Tumor Classification in Digital Histopathology Images with Domain Adapted Deep Learning"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-018-30535-1"},{"key":"ref14","first-page":"903","author":"hafiane","year":"0","journal-title":"Fuzzy clustering and active contours for histopathology image segmentation and nuclei detection"},{"key":"ref15","first-page":"153","author":"kim","year":"0","journal-title":"Nucleus segmentation and recognition of uterine cervical Pap-smears"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1016\/j.bbe.2016.06.005"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/TCSI.2006.884469"},{"key":"ref18","first-page":"3431","author":"long","year":"0","journal-title":"Fully Convolutional Networks for Semantic Segmentation"},{"key":"ref19","first-page":"1520","author":"noh","year":"0","journal-title":"Learning deconvolution network for semantic segmentation"},{"journal-title":"Detecting cancer metastases on gigapixel pathology images","year":"2017","author":"liu","key":"ref28"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1001\/jama.2015.1405"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.11613\/BM.2012.031"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1136\/jclinpath-2014-202491"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1093\/gigascience\/giy065"},{"key":"ref29","first-page":"1107","author":"macenko","year":"0","journal-title":"A method for normalizing histology slides for quantitative analysis"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2019.05.010"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1016\/j.compmedimag.2018.11.003"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.5114\/wo.2014.47136"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1001\/jamanetworkopen.2019.4337"},{"journal-title":"Interpretable Classification from Skin Cancer Histology Slides Using Deep Learning A Retrospective Multicenter Study","year":"2019","author":"xie","key":"ref9"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.3322\/caac.21492"},{"key":"ref20","first-page":"234","author":"ronneberger","year":"0","journal-title":"U-net Convolutional networks for biomedical image segmentation"},{"key":"ref22","first-page":"406","author":"zhang","year":"0","journal-title":"Combining fully convolutional networks and graph-based approach for automated segmentation of cervical cell nuclei"},{"key":"ref21","doi-asserted-by":"crossref","first-page":"2901","DOI":"10.1109\/TBME.2017.2686418","article-title":"Gland instance segmentation using deep multichannel neural networks","volume":"64","author":"xu","year":"2017","journal-title":"IEEE Transactions on Biomedical Engineering"},{"key":"ref24","first-page":"75","author":"mahbod","year":"0","journal-title":"A Two-Stage U-Net Algorithm for Segmentation of Nuclei in H&E-Stained Tissues"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2018.2865709"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1097\/PAS.0b013e318299f0fb"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1504\/IJDMB.2019.101393"}],"event":{"name":"2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","start":{"date-parts":[[2019,11,18]]},"location":"San Diego, CA, USA","end":{"date-parts":[[2019,11,21]]}},"container-title":["2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/8965270\/8982928\/08983158.pdf?arnumber=8983158","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,15]],"date-time":"2022-07-15T03:07:27Z","timestamp":1657854447000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8983158\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,11]]},"references-count":32,"URL":"https:\/\/doi.org\/10.1109\/bibm47256.2019.8983158","relation":{},"subject":[],"published":{"date-parts":[[2019,11]]}}}