{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T20:23:11Z","timestamp":1740169391816,"version":"3.37.3"},"reference-count":61,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62206305","72101265"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2024]]},"DOI":"10.1109\/access.2024.3479691","type":"journal-article","created":{"date-parts":[[2024,10,14]],"date-time":"2024-10-14T17:25:51Z","timestamp":1728926751000},"page":"167834-167844","source":"Crossref","is-referenced-by-count":0,"title":["Consistent Augmentation Learning for Generalizing CLIP to Unseen Domains"],"prefix":"10.1109","volume":"12","author":[{"ORCID":"https:\/\/orcid.org\/0009-0009-1955-1754","authenticated-orcid":false,"given":"Qinan","family":"Xuan","sequence":"first","affiliation":[{"name":"Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China"}]},{"given":"Tianyuan","family":"Yu","sequence":"additional","affiliation":[{"name":"Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-7667-6539","authenticated-orcid":false,"given":"Liang","family":"Bai","sequence":"additional","affiliation":[{"name":"Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4636-5713","authenticated-orcid":false,"given":"Yirun","family":"Ruan","sequence":"additional","affiliation":[{"name":"Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.5555\/2946645.2946704"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00566"},{"key":"ref3","article-title":"Invariant risk minimization","author":"Arjovsky","year":"2019","journal-title":"arXiv:1907.02893"},{"key":"ref4","first-page":"2178","article-title":"Generalizing from several related classification tasks to a new unlabeled sample","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"24","author":"Blanchard"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/ICPR48806.2021.9412735"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i07.7003"},{"key":"ref7","first-page":"8748","article-title":"Learning transferable visual models from natural language supervision","volume-title":"Proc. Int. Conf. Mach. Learn.","volume":"139","author":"Radford"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-022-01653-1"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.01631"},{"key":"ref10","first-page":"31716","article-title":"CLIPood: Generalizing clip to out-of-distributions","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Shu"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.00780"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2022.3195549"},{"key":"ref13","first-page":"1126","article-title":"Model-agnostic meta-learning for fast adaptation of deep networks","volume-title":"Proc. 34th Int. Conf. Mach. Learn.","volume":"70","author":"Finn"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00612"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV51070.2023.01394"},{"key":"ref16","first-page":"6450","article-title":"Domain generalization via model-agnostic learning of semantic features","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"32","author":"Dou"},{"key":"ref17","first-page":"13","article-title":"ViLBERT: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"32","author":"Lu"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D19-1514"},{"key":"ref19","first-page":"1877","article-title":"Language models are few-shot learners","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Brown"},{"key":"ref20","first-page":"4904","article-title":"Scaling up visual and vision-language representation learning with noisy text supervision","volume-title":"Proc. 38th Int. Conf. Mach. Learn.","volume":"139","author":"Jia"},{"key":"ref21","first-page":"12888","article-title":"BLIP: Bootstrapping language-image pre-training for unified vision-language understanding and generation","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Li"},{"key":"ref22","article-title":"CoCa: Contrastive captioners are image-text foundation models","author":"Yu","year":"2022","journal-title":"arXiv:2205.01917"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52733.2024.01343"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW63382.2024.00778"},{"article-title":"Understanding zero-shot adversarial robustness for large-scale models","volume-title":"Proc. 11th Int. Conf. Learn. Represent.","author":"Mao","key":"ref25"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52729.2023.01366"},{"key":"ref27","article-title":"Domain prompt learning for efficiently adapting CLIP to unseen domains","author":"Zhang","year":"2021","journal-title":"arXiv:2111.12853"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52729.2023.01832"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-023-01891-x"},{"key":"ref30","first-page":"1097","article-title":"ImageNet classification with deep convolutional neural networks","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"25","author":"Krizhevsky"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.4324\/9781410605337-29"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref33","article-title":"Mixup inference: Better exploiting mixup to defend adversarial attacks","author":"Pang","year":"2019","journal-title":"arXiv:1909.11515"},{"key":"ref34","article-title":"Very deep convolutional networks for large-scale image recognition","author":"Simonyan","year":"2014","journal-title":"arXiv:1409.1556"},{"key":"ref35","first-page":"1308","article-title":"Greedy policy search: A simple baseline for learnable test-time augmentation","volume-title":"Proc. Conf. Uncertainty Artif. Intell.","author":"Lyzhov"},{"key":"ref36","first-page":"14274","article-title":"Test-time prompt tuning for zero-shot generalization in vision-language models","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"35","author":"Shu"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52733.2024.02245"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-031-20050-2_26"},{"article-title":"In search of lost domain generalization","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Gulrajani","key":"ref39"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.591"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2011.5995347"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.572"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01270-0_28"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.00514"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52729.2023.00653"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52729.2023.02225"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"ref48","first-page":"5389","article-title":"Do ImageNet classifiers generalize to ImageNet?","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Recht"},{"key":"ref49","first-page":"10506","article-title":"Learning robust global representations by penalizing local predictive power","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"32","author":"Wang"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.01501"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00823"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1109\/ICVGIP.2008.47"},{"key":"ref53","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2014.461"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2012.6248092"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1109\/ICCVW.2013.77"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.48550\/ARXIV.1212.0402"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2004.383"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-10599-4_29"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2010.5539970"},{"key":"ref60","article-title":"Fine-grained visual classification of aircraft","author":"Maji","year":"2013","journal-title":"arXiv:1306.5151"},{"key":"ref61","doi-asserted-by":"publisher","DOI":"10.1109\/JSTARS.2019.2918242"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx8\/6287639\/10380310\/10716475.pdf?arnumber=10716475","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,27]],"date-time":"2024-11-27T00:53:14Z","timestamp":1732668794000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10716475\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"references-count":61,"URL":"https:\/\/doi.org\/10.1109\/access.2024.3479691","relation":{},"ISSN":["2169-3536"],"issn-type":[{"type":"electronic","value":"2169-3536"}],"subject":[],"published":{"date-parts":[[2024]]}}}